[][src]Struct rin::math::core::Unit

#[repr(transparent)]
pub struct Unit<T> { /* fields omitted */ }

A wrapper that ensures the underlying algebraic entity has a unit norm.

Use .as_ref() or .unwrap() to obtain the underlying value by-reference or by-move.

Methods

impl<N, D, S> Unit<Matrix<N, D, U1, S>> where
    D: Dim,
    N: Real,
    S: Storage<N, D, U1>, 
[src]

Computes the spherical linear interpolation between two unit vectors.

Computes the spherical linear interpolation between two unit vectors.

Returns None if the two vectors are almost collinear and with opposite direction (in this case, there is an infinity of possible results).

impl<T> Unit<T> where
    T: NormedSpace
[src]

Normalize the given value and return it wrapped on a Unit structure.

Attempts to normalize the given value and return it wrapped on a Unit structure.

Returns None if the norm was smaller or equal to min_norm.

Normalize the given value and return it wrapped on a Unit structure and its norm.

Normalize the given value and return it wrapped on a Unit structure and its norm.

Returns None if the norm was smaller or equal to min_norm.

Normalizes this value again. This is useful when repeated computations might cause a drift in the norm because of float inaccuracies.

Returns the norm before re-normalization (should be close to 1.0).

impl<T> Unit<T>
[src]

Wraps the given value, assuming it is already normalized.

Wraps the given reference, assuming it is already normalized.

Retrieves the underlying value.

Returns a mutable reference to the underlying value. This is _unchecked because modifying the underlying value in such a way that it no longer has unit length may lead to unexpected results.

impl<N> Unit<Quaternion<N>> where
    N: Real
[src]

Deprecated

: This method is unnecessary and will be removed in a future release. Use .clone() instead.

Moves this unit quaternion into one that owns its data.

Deprecated

: This method is unnecessary and will be removed in a future release. Use .clone() instead.

Clones this unit quaternion into one that owns its data.

The rotation angle in [0; pi] of this unit quaternion.

Example

let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);
assert_eq!(rot.angle(), 1.78);

The underlying quaternion.

Same as self.as_ref().

Example

let axis = UnitQuaternion::identity();
assert_eq!(*axis.quaternion(), Quaternion::new(1.0, 0.0, 0.0, 0.0));

Compute the conjugate of this unit quaternion.

Example

let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);
let conj = rot.conjugate();
assert_eq!(conj, UnitQuaternion::from_axis_angle(&-axis, 1.78));

Inverts this quaternion if it is not zero.

Example

let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);
let inv = rot.inverse();
assert_eq!(rot * inv, UnitQuaternion::identity());
assert_eq!(inv * rot, UnitQuaternion::identity());

The rotation angle needed to make self and other coincide.

Example

let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0);
let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1);
assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6);

The unit quaternion needed to make self and other coincide.

The result is such that: self.rotation_to(other) * self == other.

Example

let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0);
let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1);
let rot_to = rot1.rotation_to(&rot2);
assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);

Linear interpolation between two unit quaternions.

The result is not normalized.

Example

let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0));
let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0));
assert_eq!(q1.lerp(&q2, 0.1), Quaternion::new(0.9, 0.1, 0.0, 0.0));

Normalized linear interpolation between two unit quaternions.

This is the same as self.lerp except that the result is normalized.

Example

let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0));
let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0));
assert_eq!(q1.nlerp(&q2, 0.1), UnitQuaternion::new_normalize(Quaternion::new(0.9, 0.1, 0.0, 0.0)));

Spherical linear interpolation between two unit quaternions.

Panics if the angle between both quaternion is 180 degrees (in which case the interpolation is not well-defined). Use .try_slerp instead to avoid the panic.

Computes the spherical linear interpolation between two unit quaternions or returns None if both quaternions are approximately 180 degrees apart (in which case the interpolation is not well-defined).

Arguments

  • self: the first quaternion to interpolate from.
  • other: the second quaternion to interpolate toward.
  • t: the interpolation parameter. Should be between 0 and 1.
  • epsilon: the value below which the sinus of the angle separating both quaternion must be to return None.

Compute the conjugate of this unit quaternion in-place.

Inverts this quaternion if it is not zero.

Example

let axisangle = Vector3::new(0.1, 0.2, 0.3);
let mut rot = UnitQuaternion::new(axisangle);
rot.inverse_mut();
assert_relative_eq!(rot * UnitQuaternion::new(axisangle), UnitQuaternion::identity());
assert_relative_eq!(UnitQuaternion::new(axisangle) * rot, UnitQuaternion::identity());

The rotation axis of this unit quaternion or None if the rotation is zero.

Example

let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = UnitQuaternion::from_axis_angle(&axis, angle);
assert_eq!(rot.axis(), Some(axis));

// Case with a zero angle.
let rot = UnitQuaternion::from_axis_angle(&axis, 0.0);
assert!(rot.axis().is_none());

The rotation axis of this unit quaternion multiplied by the rotation angle.

Example

let axisangle = Vector3::new(0.1, 0.2, 0.3);
let rot = UnitQuaternion::new(axisangle);
assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6);

The rotation axis and angle in ]0, pi] of this unit quaternion.

Returns None if the angle is zero.

Example

let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = UnitQuaternion::from_axis_angle(&axis, angle);
assert_eq!(rot.axis_angle(), Some((axis, angle)));

// Case with a zero angle.
let rot = UnitQuaternion::from_axis_angle(&axis, 0.0);
assert!(rot.axis_angle().is_none());

Compute the exponential of a quaternion.

Note that this function yields a Quaternion<N> because it looses the unit property.

Compute the natural logarithm of a quaternion.

Note that this function yields a Quaternion<N> because it looses the unit property. The vector part of the return value corresponds to the axis-angle representation (divided by 2.0) of this unit quaternion.

Example

let axisangle = Vector3::new(0.1, 0.2, 0.3);
let q = UnitQuaternion::new(axisangle);
assert_relative_eq!(q.ln().vector().into_owned(), axisangle, epsilon = 1.0e-6);

Raise the quaternion to a given floating power.

This returns the unit quaternion that identifies a rotation with axis self.axis() and angle self.angle() × n.

Example

let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = UnitQuaternion::from_axis_angle(&axis, angle);
let pow = rot.powf(2.0);
assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6);
assert_eq!(pow.angle(), 2.4);

Builds a rotation matrix from this unit quaternion.

Example

let q = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
let rot = q.to_rotation_matrix();
let expected = Matrix3::new(0.8660254, -0.5,      0.0,
                            0.5,       0.8660254, 0.0,
                            0.0,       0.0,       1.0);

assert_relative_eq!(*rot.matrix(), expected, epsilon = 1.0e-6);

Deprecated

: This is renamed to use .euler_angles().

Converts this unit quaternion into its equivalent Euler angles.

The angles are produced in the form (roll, pitch, yaw).

Retrieves the euler angles corresponding to this unit quaternion.

The angles are produced in the form (roll, pitch, yaw).

Example

let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3);
let euler = rot.euler_angles();
assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);

Converts this unit quaternion into its equivalent homogeneous transformation matrix.

Example

let rot = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
let expected = Matrix4::new(0.8660254, -0.5,      0.0, 0.0,
                            0.5,       0.8660254, 0.0, 0.0,
                            0.0,       0.0,       1.0, 0.0,
                            0.0,       0.0,       0.0, 1.0);

assert_relative_eq!(rot.to_homogeneous(), expected, epsilon = 1.0e-6);

impl<N> Unit<Quaternion<N>> where
    N: Real
[src]

The rotation identity.

Example

let q = UnitQuaternion::identity();
let q2 = UnitQuaternion::new(Vector3::new(1.0, 2.0, 3.0));
let v = Vector3::new_random();
let p = Point3::from(v);

assert_eq!(q * q2, q2);
assert_eq!(q2 * q, q2);
assert_eq!(q * v, v);
assert_eq!(q * p, p);

Creates a new quaternion from a unit vector (the rotation axis) and an angle (the rotation angle).

Example

let axis = Vector3::y_axis();
let angle = f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let q = UnitQuaternion::from_axis_angle(&axis, angle);

assert_eq!(q.axis().unwrap(), axis);
assert_eq!(q.angle(), angle);
assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// A zero vector yields an identity.
assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity());

Creates a new unit quaternion from a quaternion.

The input quaternion will be normalized.

Creates a new unit quaternion from Euler angles.

The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.

Example

let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3);
let euler = rot.euler_angles();
assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);

Builds an unit quaternion from a rotation matrix.

Example

let axis = Vector3::y_axis();
let angle = 0.1;
let rot = Rotation3::from_axis_angle(&axis, angle);
let q = UnitQuaternion::from_rotation_matrix(&rot);
assert_relative_eq!(q.to_rotation_matrix(), rot, epsilon = 1.0e-6);
assert_relative_eq!(q.axis().unwrap(), rot.axis().unwrap(), epsilon = 1.0e-6);
assert_relative_eq!(q.angle(), rot.angle(), epsilon = 1.0e-6);

The unit quaternion needed to make a and b be collinear and point toward the same direction.

Example

let a = Vector3::new(1.0, 2.0, 3.0);
let b = Vector3::new(3.0, 1.0, 2.0);
let q = UnitQuaternion::rotation_between(&a, &b).unwrap();
assert_relative_eq!(q * a, b);
assert_relative_eq!(q.inverse() * b, a);

The smallest rotation needed to make a and b collinear and point toward the same direction, raised to the power s.

Example

let a = Vector3::new(1.0, 2.0, 3.0);
let b = Vector3::new(3.0, 1.0, 2.0);
let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap();
let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap();
assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6);
assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6);

The unit quaternion needed to make a and b be collinear and point toward the same direction.

Example

let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0));
let q = UnitQuaternion::rotation_between(&a, &b).unwrap();
assert_relative_eq!(q * a, b);
assert_relative_eq!(q.inverse() * b, a);

The smallest rotation needed to make a and b collinear and point toward the same direction, raised to the power s.

Example

let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0));
let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap();
let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap();
assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6);
assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6);

Creates an unit quaternion that corresponds to the local frame of an observer standing at the origin and looking toward dir.

It maps the z axis to the direction dir.

Arguments

  • dir - The look direction. It does not need to be normalized.
  • up - The vertical direction. It does not need to be normalized. The only requirement of this parameter is to not be collinear to dir. Non-collinearity is not checked.

Example

let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();

let q = UnitQuaternion::new_observer_frame(&dir, &up);
assert_relative_eq!(q * Vector3::z(), dir.normalize());

Builds a right-handed look-at view matrix without translation.

It maps the view direction dir to the negative z axis. This conforms to the common notion of right handed look-at matrix from the computer graphics community.

Arguments

  • dir − The view direction. It does not need to be normalized.
  • up - A vector approximately aligned with required the vertical axis. It does not need to be normalized. The only requirement of this parameter is to not be collinear to dir.

Example

let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();

let q = UnitQuaternion::look_at_rh(&dir, &up);
assert_relative_eq!(q * dir.normalize(), -Vector3::z());

Builds a left-handed look-at view matrix without translation.

It maps the view direction dir to the positive z axis. This conforms to the common notion of left handed look-at matrix from the computer graphics community.

Arguments

  • dir − The view direction. It does not need to be normalized.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to dir.

Example

let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();

let q = UnitQuaternion::look_at_lh(&dir, &up);
assert_relative_eq!(q * dir.normalize(), Vector3::z());

Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.

If axisangle has a magnitude smaller than N::default_epsilon(), this returns the identity rotation.

Example

let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let q = UnitQuaternion::new(axisangle);

assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// A zero vector yields an identity.
assert_eq!(UnitQuaternion::new(Vector3::<f32>::zeros()), UnitQuaternion::identity());

Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.

If axisangle has a magnitude smaller than eps, this returns the identity rotation.

Example

let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let q = UnitQuaternion::new_eps(axisangle, 1.0e-6);

assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// An almost zero vector yields an identity.
assert_eq!(UnitQuaternion::new_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity());

Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.

If axisangle has a magnitude smaller than N::default_epsilon(), this returns the identity rotation. Same as Self::new(axisangle).

Example

let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let q = UnitQuaternion::from_scaled_axis(axisangle);

assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// A zero vector yields an identity.
assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity());

Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.

If axisangle has a magnitude smaller than eps, this returns the identity rotation. Same as Self::new_eps(axisangle, eps).

Example

let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let q = UnitQuaternion::from_scaled_axis_eps(axisangle, 1.0e-6);

assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// An almost zero vector yields an identity.
assert_eq!(UnitQuaternion::from_scaled_axis_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity());

impl<N> Unit<Complex<N>> where
    N: Real
[src]

The rotation angle in ]-pi; pi] of this unit complex number.

Example

let rot = UnitComplex::new(1.78);
assert_eq!(rot.angle(), 1.78);

The sine of the rotation angle.

Example

let angle = 1.78f32;
let rot = UnitComplex::new(angle);
assert_eq!(rot.sin_angle(), angle.sin());

The cosine of the rotation angle.

Example

let angle = 1.78f32;
let rot = UnitComplex::new(angle);
assert_eq!(rot.cos_angle(),angle.cos());

The rotation angle returned as a 1-dimensional vector.

This is generally used in the context of generic programming. Using the .angle() method instead is more common.

The rotation axis and angle in ]0, pi] of this complex number.

This is generally used in the context of generic programming. Using the .angle() method instead is more common. Returns None if the angle is zero.

The underlying complex number.

Same as self.as_ref().

Example

let angle = 1.78f32;
let rot = UnitComplex::new(angle);
assert_eq!(*rot.complex(), Complex::new(angle.cos(), angle.sin()));

Compute the conjugate of this unit complex number.

Example

let rot = UnitComplex::new(1.78);
let conj = rot.conjugate();
assert_eq!(rot.complex().im, -conj.complex().im);
assert_eq!(rot.complex().re, conj.complex().re);

Inverts this complex number if it is not zero.

Example

let rot = UnitComplex::new(1.2);
let inv = rot.inverse();
assert_relative_eq!(rot * inv, UnitComplex::identity(), epsilon = 1.0e-6);
assert_relative_eq!(inv * rot, UnitComplex::identity(), epsilon = 1.0e-6);

The rotation angle needed to make self and other coincide.

Example

let rot1 = UnitComplex::new(0.1);
let rot2 = UnitComplex::new(1.7);
assert_relative_eq!(rot1.angle_to(&rot2), 1.6);

The unit complex number needed to make self and other coincide.

The result is such that: self.rotation_to(other) * self == other.

Example

let rot1 = UnitComplex::new(0.1);
let rot2 = UnitComplex::new(1.7);
let rot_to = rot1.rotation_to(&rot2);

assert_relative_eq!(rot_to * rot1, rot2);
assert_relative_eq!(rot_to.inverse() * rot2, rot1);

Compute in-place the conjugate of this unit complex number.

Example

let angle = 1.7;
let rot = UnitComplex::new(angle);
let mut conj = UnitComplex::new(angle);
conj.conjugate_mut();
assert_eq!(rot.complex().im, -conj.complex().im);
assert_eq!(rot.complex().re, conj.complex().re);

Inverts in-place this unit complex number.

Example

let angle = 1.7;
let mut rot = UnitComplex::new(angle);
rot.inverse_mut();
assert_relative_eq!(rot * UnitComplex::new(angle), UnitComplex::identity());
assert_relative_eq!(UnitComplex::new(angle) * rot, UnitComplex::identity());

Raise this unit complex number to a given floating power.

This returns the unit complex number that identifies a rotation angle equal to self.angle() × n.

Example

let rot = UnitComplex::new(0.78);
let pow = rot.powf(2.0);
assert_eq!(pow.angle(), 2.0 * 0.78);

Builds the rotation matrix corresponding to this unit complex number.

Example

let rot = UnitComplex::new(f32::consts::FRAC_PI_6);
let expected = Rotation2::new(f32::consts::FRAC_PI_6);
assert_eq!(rot.to_rotation_matrix(), expected);

Converts this unit complex number into its equivalent homogeneous transformation matrix.

Example

let rot = UnitComplex::new(f32::consts::FRAC_PI_6);
let expected = Matrix3::new(0.8660254, -0.5,      0.0,
                            0.5,       0.8660254, 0.0,
                            0.0,       0.0,       1.0);
assert_eq!(rot.to_homogeneous(), expected);

impl<N> Unit<Complex<N>> where
    N: Real
[src]

The unit complex number multiplicative identity.

Example

let rot1 = UnitComplex::identity();
let rot2 = UnitComplex::new(1.7);

assert_eq!(rot1 * rot2, rot2);
assert_eq!(rot2 * rot1, rot2);

Builds the unit complex number corresponding to the rotation with the given angle.

Example

let rot = UnitComplex::new(f32::consts::FRAC_PI_2);

assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));

Builds the unit complex number corresponding to the rotation with the angle.

Same as Self::new(angle).

Example

let rot = UnitComplex::from_angle(f32::consts::FRAC_PI_2);

assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));

Builds the unit complex number from the sinus and cosinus of the rotation angle.

The input values are not checked to actually be cosines and sine of the same value. Is is generally preferable to use the ::new(angle) constructor instead.

Example

let angle = f32::consts::FRAC_PI_2;
let rot = UnitComplex::from_cos_sin_unchecked(angle.cos(), angle.sin());

assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));

Builds a unit complex rotation from an angle in radian wrapped in a 1-dimensional vector.

This is generally used in the context of generic programming. Using the ::new(angle) method instead is more common.

Creates a new unit complex number from a complex number.

The input complex number will be normalized.

Creates a new unit complex number from a complex number.

The input complex number will be normalized. Returns the norm of the complex number as well.

Builds the unit complex number from the corresponding 2D rotation matrix.

Example

let rot = Rotation2::new(1.7);
let complex = UnitComplex::from_rotation_matrix(&rot);
assert_eq!(complex, UnitComplex::new(1.7));

The unit complex needed to make a and b be collinear and point toward the same direction.

Example

let a = Vector2::new(1.0, 2.0);
let b = Vector2::new(2.0, 1.0);
let rot = UnitComplex::rotation_between(&a, &b);
assert_relative_eq!(rot * a, b);
assert_relative_eq!(rot.inverse() * b, a);

The smallest rotation needed to make a and b collinear and point toward the same direction, raised to the power s.

Example

let a = Vector2::new(1.0, 2.0);
let b = Vector2::new(2.0, 1.0);
let rot2 = UnitComplex::scaled_rotation_between(&a, &b, 0.2);
let rot5 = UnitComplex::scaled_rotation_between(&a, &b, 0.5);
assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);

The unit complex needed to make a and b be collinear and point toward the same direction.

Example

let a = Unit::new_normalize(Vector2::new(1.0, 2.0));
let b = Unit::new_normalize(Vector2::new(2.0, 1.0));
let rot = UnitComplex::rotation_between_axis(&a, &b);
assert_relative_eq!(rot * a, b);
assert_relative_eq!(rot.inverse() * b, a);

The smallest rotation needed to make a and b collinear and point toward the same direction, raised to the power s.

Example

let a = Unit::new_normalize(Vector2::new(1.0, 2.0));
let b = Unit::new_normalize(Vector2::new(2.0, 1.0));
let rot2 = UnitComplex::scaled_rotation_between_axis(&a, &b, 0.2);
let rot5 = UnitComplex::scaled_rotation_between_axis(&a, &b, 0.5);
assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);

impl<N> Unit<Complex<N>> where
    N: Real
[src]

Performs the multiplication rhs = self * rhs in-place.

Performs the multiplication lhs = lhs * self in-place.

Trait Implementations

impl<N> From<Unit<Quaternion<N>>> for Matrix<N, U3, U3, <DefaultAllocator as Allocator<N, U3, U3>>::Buffer> where
    N: Real
[src]

impl<N> From<Unit<Complex<N>>> for Matrix<N, U3, U3, <DefaultAllocator as Allocator<N, U3, U3>>::Buffer> where
    N: Real
[src]

impl<N> From<Unit<Complex<N>>> for Matrix<N, U2, U2, <DefaultAllocator as Allocator<N, U2, U2>>::Buffer> where
    N: Real
[src]

impl<N> From<Unit<Quaternion<N>>> for Matrix<N, U4, U4, <DefaultAllocator as Allocator<N, U4, U4>>::Buffer> where
    N: Real
[src]

impl<T> PartialEq<Unit<T>> for Unit<T> where
    T: PartialEq<T>, 
[src]

impl<N> Rotation<Point<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

impl<N> Rotation<Point<N, U3>> for Unit<Quaternion<N>> where
    N: Real
[src]

impl<N> AbstractSemigroup<Multiplicative> for Unit<Complex<N>> where
    N: Real
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

Returns true if associativity holds for the given arguments.

impl<N> AbstractSemigroup<Multiplicative> for Unit<Quaternion<N>> where
    N: Real
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

Returns true if associativity holds for the given arguments.

impl<N> RelativeEq for Unit<Quaternion<N>> where
    N: RelativeEq<Epsilon = N> + Real
[src]

The inverse of ApproxEq::relative_eq.

impl<N> RelativeEq for Unit<Complex<N>> where
    N: Real
[src]

The inverse of ApproxEq::relative_eq.

impl<N, R, C, S> RelativeEq for Unit<Matrix<N, R, C, S>> where
    C: Dim,
    N: Scalar + RelativeEq,
    R: Dim,
    S: Storage<N, R, C>,
    <N as AbsDiffEq>::Epsilon: Copy
[src]

The inverse of ApproxEq::relative_eq.

impl<N> Display for Unit<Complex<N>> where
    N: Display + Real
[src]

impl<N> Display for Unit<Quaternion<N>> where
    N: Display + Real
[src]

impl<N> AbstractLoop<Multiplicative> for Unit<Quaternion<N>> where
    N: Real
[src]

impl<N> AbstractLoop<Multiplicative> for Unit<Complex<N>> where
    N: Real
[src]

impl<N, C> MulAssign<Unit<Quaternion<N>>> for Transform<N, U3, C> where
    C: TCategory,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

impl<'b, N> MulAssign<&'b Rotation<N, U3>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U3>, 
[src]

impl<N> MulAssign<Unit<Quaternion<N>>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

impl<N> MulAssign<Unit<Complex<N>>> for Rotation<N, U2> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

impl<'b, N> MulAssign<&'b Unit<Quaternion<N>>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

impl<N> MulAssign<Rotation<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

impl<'b, N, C> MulAssign<&'b Unit<Quaternion<N>>> for Transform<N, U3, C> where
    C: TCategory,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

impl<'b, N> MulAssign<&'b Rotation<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

impl<N> MulAssign<Rotation<N, U3>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U3>, 
[src]

impl<'b, N> MulAssign<&'b Unit<Complex<N>>> for Rotation<N, U2> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

impl<'b, N> MulAssign<&'b Unit<Complex<N>>> for Unit<Complex<N>> where
    N: Real
[src]

impl<N> MulAssign<Unit<Complex<N>>> for Unit<Complex<N>> where
    N: Real
[src]

impl<N> Transformation<Point<N, U3>> for Unit<Quaternion<N>> where
    N: Real
[src]

impl<N> Transformation<Point<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

impl<N> AffineTransformation<Point<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

Type of the first rotation to be applied.

Type of the non-uniform scaling to be applied.

The type of the pure translation part of this affine transformation.

Appends to this similarity a rotation centered at the point p, i.e., this point is left invariant. Read more

impl<N> AffineTransformation<Point<N, U3>> for Unit<Quaternion<N>> where
    N: Real
[src]

Type of the first rotation to be applied.

Type of the non-uniform scaling to be applied.

The type of the pure translation part of this affine transformation.

Appends to this similarity a rotation centered at the point p, i.e., this point is left invariant. Read more

impl<T> Neg for Unit<T> where
    T: Neg
[src]

The resulting type after applying the - operator.

impl<N> AbsDiffEq for Unit<Quaternion<N>> where
    N: AbsDiffEq<Epsilon = N> + Real
[src]

Used for specifying relative comparisons.

The inverse of ApproxEq::abs_diff_eq.

impl<N> AbsDiffEq for Unit<Complex<N>> where
    N: Real
[src]

Used for specifying relative comparisons.

The inverse of ApproxEq::abs_diff_eq.

impl<N, R, C, S> AbsDiffEq for Unit<Matrix<N, R, C, S>> where
    C: Dim,
    N: Scalar + AbsDiffEq,
    R: Dim,
    S: Storage<N, R, C>,
    <N as AbsDiffEq>::Epsilon: Copy
[src]

Used for specifying relative comparisons.

The inverse of ApproxEq::abs_diff_eq.

impl<T> Hash for Unit<T> where
    T: Hash
[src]

Feeds a slice of this type into the given [Hasher]. Read more

impl<T> Eq for Unit<T> where
    T: Eq
[src]

impl<'b, N> Mul<&'b Similarity<N, U2, Unit<Complex<N>>>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<N, S> Mul<Matrix<N, U2, U1, S>> for Unit<Complex<N>> where
    N: Real,
    S: Storage<N, U2, U1>,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Unit<Complex<N>>> for Rotation<N, U2> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Unit<Quaternion<N>>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N, S> Mul<Matrix<N, U2, U1, S>> for &'a Unit<Complex<N>> where
    N: Real,
    S: Storage<N, U2, U1>,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Rotation<N, U2>> for &'a Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Rotation<N, U3>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U3>, 
[src]

The resulting type after applying the * operator.

impl<'b, N, SB> Mul<&'b Matrix<N, U3, U1, SB>> for Unit<Quaternion<N>> where
    N: Real,
    SB: Storage<N, U3, U1>,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N, D, S> Mul<&'b Unit<Matrix<N, D, U1, S>>> for &'a Rotation<N, D> where
    D: DimName,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N>,
    S: Storage<N, D, U1>,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

The resulting type after applying the * operator.

impl<N, S> Mul<Unit<Matrix<N, U2, U1, S>>> for Unit<Complex<N>> where
    N: Real,
    S: Storage<N, U2, U1>,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N> Mul<Unit<Complex<N>>> for &'a Translation<N, U2> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Isometry<N, U2, Unit<Complex<N>>>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'b, N, C> Mul<&'b Unit<Quaternion<N>>> for Transform<N, U3, C> where
    C: TCategoryMul<TAffine>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the * operator.

impl<N> Mul<Isometry<N, U3, Unit<Quaternion<N>>>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N> Mul<Similarity<N, U3, Unit<Quaternion<N>>>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Point<N, U3>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'b, N, S> Mul<&'b Matrix<N, U2, U1, S>> for Unit<Complex<N>> where
    N: Real,
    S: Storage<N, U2, U1>,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N, C> Mul<&'b Transform<N, U3, C>> for &'a Unit<Quaternion<N>> where
    C: TCategoryMul<TAffine>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U4>, 
[src]

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Rotation<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Similarity<N, U3, Unit<Quaternion<N>>>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<N> Mul<Unit<Quaternion<N>>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the * operator.

impl<N> Mul<Point<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N, SB> Mul<Unit<Matrix<N, U3, U1, SB>>> for &'a Unit<Quaternion<N>> where
    N: Real,
    SB: Storage<N, U3, U1>,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N, SB> Mul<Matrix<N, U3, U1, SB>> for &'a Unit<Quaternion<N>> where
    N: Real,
    SB: Storage<N, U3, U1>,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
    N: Real,
    DefaultAllocator: Allocator<N, U3, U3>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N> Mul<Rotation<N, U2>> for &'a Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Unit<Quaternion<N>>> for Rotation<N, U3> where
    N: Real,
    DefaultAllocator: Allocator<N, U3, U3>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N> Mul<Unit<Quaternion<N>>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N> Mul<Translation<N, U2>> for &'a Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N, D, R> Mul<&'b Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: Real,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

The resulting type after applying the * operator.

impl<N> Mul<Unit<Quaternion<N>>> for Rotation<N, U3> where
    N: Real,
    DefaultAllocator: Allocator<N, U3, U3>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N> Mul<Point<N, U3>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N, C> Mul<Unit<Quaternion<N>>> for &'a Transform<N, U3, C> where
    C: TCategoryMul<TAffine>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N> Mul<Rotation<N, U3>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U3>, 
[src]

The resulting type after applying the * operator.

impl<N, C> Mul<Transform<N, U3, C>> for Unit<Quaternion<N>> where
    C: TCategoryMul<TAffine>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U4>, 
[src]

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Unit<Quaternion<N>>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the * operator.

impl<N> Mul<Unit<Complex<N>>> for Rotation<N, U2> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Unit<Complex<N>>> for Translation<N, U2> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N, S> Mul<&'b Matrix<N, U2, U1, S>> for &'a Unit<Complex<N>> where
    N: Real,
    S: Storage<N, U2, U1>,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<N, D, S> Mul<Unit<Matrix<N, D, U1, S>>> for Rotation<N, D> where
    D: DimName,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N>,
    S: Storage<N, D, U1>,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Unit<Complex<N>>> for Unit<Complex<N>> where
    N: Real
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Isometry<N, U2, Unit<Complex<N>>>> for &'a Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Point<N, U2>> for &'a Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N> Mul<Isometry<N, U3, Unit<Quaternion<N>>>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Translation<N, U3>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Rotation<N, U3>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U3>, 
[src]

The resulting type after applying the * operator.

impl<N> Mul<Point<N, U3>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N, SB> Mul<&'b Unit<Matrix<N, U3, U1, SB>>> for &'a Unit<Quaternion<N>> where
    N: Real,
    SB: Storage<N, U3, U1>,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N> Mul<Unit<Quaternion<N>>> for &'a Translation<N, U3> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Similarity<N, U3, Unit<Quaternion<N>>>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<N> Mul<Rotation<N, U3>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U3>, 
[src]

The resulting type after applying the * operator.

impl<'a, N, C> Mul<Transform<N, U3, C>> for &'a Unit<Quaternion<N>> where
    C: TCategoryMul<TAffine>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U4>, 
[src]

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<N, SB> Mul<Matrix<N, U3, U1, SB>> for Unit<Quaternion<N>> where
    N: Real,
    SB: Storage<N, U3, U1>,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N> Mul<Translation<N, U3>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'b, N, SB> Mul<&'b Unit<Matrix<N, U3, U1, SB>>> for Unit<Quaternion<N>> where
    N: Real,
    SB: Storage<N, U3, U1>,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'b, N, D, S> Mul<&'b Unit<Matrix<N, D, U1, S>>> for Rotation<N, D> where
    D: DimName,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N>,
    S: Storage<N, D, U1>,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Point<N, U3>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<N> Mul<Similarity<N, U3, Unit<Quaternion<N>>>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N, C> Mul<&'b Unit<Quaternion<N>>> for &'a Transform<N, U3, C> where
    C: TCategoryMul<TAffine>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Translation<N, U2>> for &'a Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<N> Mul<Unit<Complex<N>>> for Translation<N, U2> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<N> Mul<Translation<N, U3>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N> Mul<Unit<Complex<N>>> for &'a Unit<Complex<N>> where
    N: Real
[src]

The resulting type after applying the * operator.

impl<'a, N, D, S> Mul<Unit<Matrix<N, D, U1, S>>> for &'a Rotation<N, D> where
    D: DimName,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N>,
    S: Storage<N, D, U1>,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D, U1>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

The resulting type after applying the * operator.

impl<N, SB> Mul<Unit<Matrix<N, U3, U1, SB>>> for Unit<Quaternion<N>> where
    N: Real,
    SB: Storage<N, U3, U1>,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N, S> Mul<&'b Unit<Matrix<N, U2, U1, S>>> for &'a Unit<Complex<N>> where
    N: Real,
    S: Storage<N, U2, U1>,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Unit<Complex<N>>> for &'a Rotation<N, U2> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Unit<Quaternion<N>>> for Translation<N, U3> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<N> Mul<Isometry<N, U2, Unit<Complex<N>>>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<N> Mul<Translation<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Unit<Quaternion<N>>> for &'a Translation<N, U3> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N, S> Mul<Unit<Matrix<N, U2, U1, S>>> for &'a Unit<Complex<N>> where
    N: Real,
    S: Storage<N, U2, U1>,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'b, N, D, R> Mul<&'b Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for Isometry<N, D, R> where
    D: DimName,
    N: Real,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

The resulting type after applying the * operator.

impl<'b, N, C> Mul<&'b Transform<N, U3, C>> for Unit<Quaternion<N>> where
    C: TCategoryMul<TAffine>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U4>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Unit<Complex<N>>> for &'a Translation<N, U2> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<N> Mul<Rotation<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Translation<N, U3>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<N> Mul<Similarity<N, U2, Unit<Complex<N>>>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<N> Mul<Unit<Quaternion<N>>> for Translation<N, U3> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N> Mul<Similarity<N, U2, Unit<Complex<N>>>> for &'a Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N, D, R> Mul<Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: Real,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N> Mul<Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
    N: Real,
    DefaultAllocator: Allocator<N, U3, U3>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Point<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<N, D, R> Mul<Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for Isometry<N, D, R> where
    D: DimName,
    N: Real,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

The resulting type after applying the * operator.

impl<N> Mul<Unit<Complex<N>>> for Unit<Complex<N>> where
    N: Real
[src]

The resulting type after applying the * operator.

impl<'a, N> Mul<Isometry<N, U2, Unit<Complex<N>>>> for &'a Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N> Mul<Point<N, U2>> for &'a Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<N, C> Mul<Unit<Quaternion<N>>> for Transform<N, U3, C> where
    C: TCategoryMul<TAffine>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Unit<Complex<N>>> for &'a Unit<Complex<N>> where
    N: Real
[src]

The resulting type after applying the * operator.

impl<'b, N, S> Mul<&'b Unit<Matrix<N, U2, U1, S>>> for Unit<Complex<N>> where
    N: Real,
    S: Storage<N, U2, U1>,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, N> Mul<Unit<Complex<N>>> for &'a Rotation<N, U2> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Translation<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N, SB> Mul<&'b Matrix<N, U3, U1, SB>> for &'a Unit<Quaternion<N>> where
    N: Real,
    SB: Storage<N, U3, U1>,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Similarity<N, U2, Unit<Complex<N>>>> for &'a Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The resulting type after applying the * operator.

impl<T> AsRef<T> for Unit<T>
[src]

impl<N1, N2, R> SubsetOf<Similarity<N2, U2, R>> for Unit<Complex<N1>> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    R: Rotation<Point<N2, U2>> + SupersetOf<Unit<Complex<N1>>>, 
[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2> SubsetOf<Unit<Complex<N2>>> for Unit<Complex<N1>> where
    N1: Real,
    N2: Real + SupersetOf<N1>, 
[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2> SubsetOf<Rotation<N2, U3>> for Unit<Quaternion<N1>> where
    N1: Real,
    N2: Real + SupersetOf<N1>, 
[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2> SubsetOf<Matrix<N2, U4, U4, <DefaultAllocator as Allocator<N2, U4, U4>>::Buffer>> for Unit<Quaternion<N1>> where
    N1: Real,
    N2: Real + SupersetOf<N1>, 
[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2> SubsetOf<Unit<Quaternion<N2>>> for Rotation<N1, U3> where
    N1: Real,
    N2: Real + SupersetOf<N1>, 
[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, C> SubsetOf<Transform<N2, U2, C>> for Unit<Complex<N1>> where
    C: SuperTCategoryOf<TAffine>,
    N1: Real,
    N2: Real + SupersetOf<N1>, 
[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2> SubsetOf<Unit<Complex<N2>>> for Rotation<N1, U2> where
    N1: Real,
    N2: Real + SupersetOf<N1>, 
[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<T> SubsetOf<T> for Unit<T> where
    T: NormedSpace,
    <T as VectorSpace>::Field: RelativeEq
[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, R> SubsetOf<Similarity<N2, U3, R>> for Unit<Quaternion<N1>> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    R: Rotation<Point<N2, U3>> + SupersetOf<Unit<Quaternion<N1>>>, 
[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, C> SubsetOf<Transform<N2, U3, C>> for Unit<Quaternion<N1>> where
    C: SuperTCategoryOf<TAffine>,
    N1: Real,
    N2: Real + SupersetOf<N1>, 
[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2> SubsetOf<Matrix<N2, U3, U3, <DefaultAllocator as Allocator<N2, U3, U3>>::Buffer>> for Unit<Complex<N1>> where
    N1: Real,
    N2: Real + SupersetOf<N1>, 
[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2> SubsetOf<Rotation<N2, U2>> for Unit<Complex<N1>> where
    N1: Real,
    N2: Real + SupersetOf<N1>, 
[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2> SubsetOf<Unit<Quaternion<N2>>> for Unit<Quaternion<N1>> where
    N1: Real,
    N2: Real + SupersetOf<N1>, 
[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, R> SubsetOf<Isometry<N2, U3, R>> for Unit<Quaternion<N1>> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    R: Rotation<Point<N2, U3>> + SupersetOf<Unit<Quaternion<N1>>>, 
[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, R> SubsetOf<Isometry<N2, U2, R>> for Unit<Complex<N1>> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    R: Rotation<Point<N2, U2>> + SupersetOf<Unit<Complex<N1>>>, 
[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N> Inverse<Multiplicative> for Unit<Quaternion<N>> where
    N: Real
[src]

impl<N> Inverse<Multiplicative> for Unit<Complex<N>> where
    N: Real
[src]

impl<N> ProjectiveTransformation<Point<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

impl<N> ProjectiveTransformation<Point<N, U3>> for Unit<Quaternion<N>> where
    N: Real
[src]

impl<T> Copy for Unit<T> where
    T: Copy
[src]

impl<N> AbstractMonoid<Multiplicative> for Unit<Quaternion<N>> where
    N: Real
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N> AbstractMonoid<Multiplicative> for Unit<Complex<N>> where
    N: Real
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<T> Deref for Unit<T>
[src]

The resulting type after dereferencing.

impl<T> Clone for Unit<T> where
    T: Clone
[src]

Performs copy-assignment from source. Read more

impl<N> Identity<Multiplicative> for Unit<Complex<N>> where
    N: Real
[src]

Specific identity.

impl<N> Identity<Multiplicative> for Unit<Quaternion<N>> where
    N: Real
[src]

Specific identity.

impl<N> DirectIsometry<Point<N, U3>> for Unit<Quaternion<N>> where
    N: Real
[src]

impl<N> DirectIsometry<Point<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

impl<N> AbstractMagma<Multiplicative> for Unit<Complex<N>> where
    N: Real
[src]

Performs specific operation.

impl<N> AbstractMagma<Multiplicative> for Unit<Quaternion<N>> where
    N: Real
[src]

Performs specific operation.

impl<N> AbstractQuasigroup<Multiplicative> for Unit<Quaternion<N>> where
    N: Real
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

Returns true if latin squareness holds for the given arguments.

impl<N> AbstractQuasigroup<Multiplicative> for Unit<Complex<N>> where
    N: Real
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

Returns true if latin squareness holds for the given arguments.

impl<T> Debug for Unit<T> where
    T: Debug
[src]

impl<N> AbstractGroup<Multiplicative> for Unit<Complex<N>> where
    N: Real
[src]

impl<N> AbstractGroup<Multiplicative> for Unit<Quaternion<N>> where
    N: Real
[src]

impl<'b, N> DivAssign<&'b Unit<Complex<N>>> for Rotation<N, U2> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

impl<'b, N> DivAssign<&'b Unit<Complex<N>>> for Unit<Complex<N>> where
    N: Real
[src]

impl<N> DivAssign<Unit<Quaternion<N>>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

impl<N> DivAssign<Unit<Complex<N>>> for Unit<Complex<N>> where
    N: Real
[src]

impl<N> DivAssign<Rotation<N, U3>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U3>, 
[src]

impl<N, C> DivAssign<Unit<Quaternion<N>>> for Transform<N, U3, C> where
    C: TCategory,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

impl<'b, N> DivAssign<&'b Unit<Quaternion<N>>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

impl<'b, N> DivAssign<&'b Rotation<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

impl<'b, N, C> DivAssign<&'b Unit<Quaternion<N>>> for Transform<N, U3, C> where
    C: TCategory,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

impl<N> DivAssign<Rotation<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

impl<N> DivAssign<Unit<Complex<N>>> for Rotation<N, U2> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

impl<'b, N> DivAssign<&'b Rotation<N, U3>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U3>, 
[src]

impl<T> Serialize for Unit<T> where
    T: Serialize
[src]

impl<'de, T> Deserialize<'de> for Unit<T> where
    T: Deserialize<'de>, 
[src]

impl<N> One for Unit<Quaternion<N>> where
    N: Real
[src]

Returns true if self is equal to the multiplicative identity. Read more

impl<N> One for Unit<Complex<N>> where
    N: Real
[src]

Returns true if self is equal to the multiplicative identity. Read more

impl<'a, 'b, N> Div<&'b Rotation<N, U3>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U3>, 
[src]

The resulting type after applying the / operator.

impl<'a, 'b, N, C> Div<&'b Transform<N, U3, C>> for &'a Unit<Quaternion<N>> where
    C: TCategoryMul<TAffine>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U4>, 
[src]

The resulting type after applying the / operator.

impl<'a, 'b, N> Div<&'b Rotation<N, U2>> for &'a Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

The resulting type after applying the / operator.

impl<'a, N> Div<Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
    N: Real,
    DefaultAllocator: Allocator<N, U3, U3>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the / operator.

impl<'a, N> Div<Unit<Complex<N>>> for &'a Rotation<N, U2> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

The resulting type after applying the / operator.

impl<N> Div<Rotation<N, U3>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U3>, 
[src]

The resulting type after applying the / operator.

impl<'b, N> Div<&'b Rotation<N, U3>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U3>, 
[src]

The resulting type after applying the / operator.

impl<'b, N> Div<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the / operator.

impl<N> Div<Rotation<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

The resulting type after applying the / operator.

impl<'a, N> Div<Unit<Complex<N>>> for &'a Unit<Complex<N>> where
    N: Real
[src]

The resulting type after applying the / operator.

impl<'a, 'b, N> Div<&'b Unit<Complex<N>>> for &'a Rotation<N, U2> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

The resulting type after applying the / operator.

impl<'b, N> Div<&'b Unit<Quaternion<N>>> for Rotation<N, U3> where
    N: Real,
    DefaultAllocator: Allocator<N, U3, U3>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the / operator.

impl<N, C> Div<Transform<N, U3, C>> for Unit<Quaternion<N>> where
    C: TCategoryMul<TAffine>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U4>, 
[src]

The resulting type after applying the / operator.

impl<'b, N> Div<&'b Unit<Complex<N>>> for Rotation<N, U2> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

The resulting type after applying the / operator.

impl<'b, N> Div<&'b Rotation<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

The resulting type after applying the / operator.

impl<'a, N, C> Div<Transform<N, U3, C>> for &'a Unit<Quaternion<N>> where
    C: TCategoryMul<TAffine>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U4>, 
[src]

The resulting type after applying the / operator.

impl<'a, 'b, N> Div<&'b Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
    N: Real,
    DefaultAllocator: Allocator<N, U3, U3>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the / operator.

impl<'b, N> Div<&'b Similarity<N, U3, Unit<Quaternion<N>>>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the / operator.

impl<'a, 'b, N> Div<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the / operator.

impl<'b, N, C> Div<&'b Transform<N, U3, C>> for Unit<Quaternion<N>> where
    C: TCategoryMul<TAffine>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U4>, 
[src]

The resulting type after applying the / operator.

impl<N> Div<Unit<Quaternion<N>>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the / operator.

impl<'b, N> Div<&'b Unit<Quaternion<N>>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the / operator.

impl<'a, N> Div<Similarity<N, U3, Unit<Quaternion<N>>>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the / operator.

impl<N> Div<Similarity<N, U3, Unit<Quaternion<N>>>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the / operator.

impl<'a, 'b, N> Div<&'b Unit<Quaternion<N>>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the / operator.

impl<'a, N> Div<Rotation<N, U2>> for &'a Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

The resulting type after applying the / operator.

impl<'a, N> Div<Unit<Quaternion<N>>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the / operator.

impl<N> Div<Unit<Complex<N>>> for Unit<Complex<N>> where
    N: Real
[src]

The resulting type after applying the / operator.

impl<N> Div<Isometry<N, U3, Unit<Quaternion<N>>>> for Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the / operator.

impl<N, C> Div<Unit<Quaternion<N>>> for Transform<N, U3, C> where
    C: TCategoryMul<TAffine>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the / operator.

impl<'a, N, C> Div<Unit<Quaternion<N>>> for &'a Transform<N, U3, C> where
    C: TCategoryMul<TAffine>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the / operator.

impl<N> Div<Unit<Quaternion<N>>> for Rotation<N, U3> where
    N: Real,
    DefaultAllocator: Allocator<N, U3, U3>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the / operator.

impl<'b, N, C> Div<&'b Unit<Quaternion<N>>> for Transform<N, U3, C> where
    C: TCategoryMul<TAffine>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the / operator.

impl<'a, N> Div<Isometry<N, U3, Unit<Quaternion<N>>>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the / operator.

impl<'b, N> Div<&'b Unit<Complex<N>>> for Unit<Complex<N>> where
    N: Real
[src]

The resulting type after applying the / operator.

impl<'a, 'b, N, C> Div<&'b Unit<Quaternion<N>>> for &'a Transform<N, U3, C> where
    C: TCategoryMul<TAffine>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + Real,
    DefaultAllocator: Allocator<N, U4, U4>,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U4, U1>, 
[src]

The resulting type after applying the / operator.

impl<'a, 'b, N> Div<&'b Similarity<N, U3, Unit<Quaternion<N>>>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

The resulting type after applying the / operator.

impl<N> Div<Unit<Complex<N>>> for Rotation<N, U2> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U2>, 
[src]

The resulting type after applying the / operator.

impl<'a, 'b, N> Div<&'b Unit<Complex<N>>> for &'a Unit<Complex<N>> where
    N: Real
[src]

The resulting type after applying the / operator.

impl<'a, N> Div<Rotation<N, U3>> for &'a Unit<Quaternion<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U3>, 
[src]

The resulting type after applying the / operator.

impl<N> Similarity<Point<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

The type of the pure (uniform) scaling part of this similarity transformation.

Applies this transformation's pure translational part to a point.

Applies this transformation's pure rotational part to a point.

Applies this transformation's pure scaling part to a point.

Applies this transformation's pure rotational part to a vector.

Applies this transformation's pure scaling part to a vector.

Applies this transformation inverse's pure translational part to a point.

Applies this transformation inverse's pure rotational part to a point.

Applies this transformation inverse's pure scaling part to a point.

Applies this transformation inverse's pure rotational part to a vector.

Applies this transformation inverse's pure scaling part to a vector.

impl<N> Similarity<Point<N, U3>> for Unit<Quaternion<N>> where
    N: Real
[src]

The type of the pure (uniform) scaling part of this similarity transformation.

Applies this transformation's pure translational part to a point.

Applies this transformation's pure rotational part to a point.

Applies this transformation's pure scaling part to a point.

Applies this transformation's pure rotational part to a vector.

Applies this transformation's pure scaling part to a vector.

Applies this transformation inverse's pure translational part to a point.

Applies this transformation inverse's pure rotational part to a point.

Applies this transformation inverse's pure scaling part to a point.

Applies this transformation inverse's pure rotational part to a vector.

Applies this transformation inverse's pure scaling part to a vector.

impl<N> UlpsEq for Unit<Complex<N>> where
    N: Real
[src]

The inverse of ApproxEq::ulps_eq.

impl<N> UlpsEq for Unit<Quaternion<N>> where
    N: UlpsEq<Epsilon = N> + Real
[src]

The inverse of ApproxEq::ulps_eq.

impl<N, R, C, S> UlpsEq for Unit<Matrix<N, R, C, S>> where
    C: Dim,
    N: Scalar + UlpsEq,
    R: Dim,
    S: Storage<N, R, C>,
    <N as AbsDiffEq>::Epsilon: Copy
[src]

The inverse of ApproxEq::ulps_eq.

impl<N> OrthogonalTransformation<Point<N, U3>> for Unit<Quaternion<N>> where
    N: Real
[src]

impl<N> OrthogonalTransformation<Point<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

impl<N> Isometry<Point<N, U2>> for Unit<Complex<N>> where
    N: Real,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

impl<N> Isometry<Point<N, U3>> for Unit<Quaternion<N>> where
    N: Real
[src]

impl From<Unit<Quaternion<f32>>> for Node
[src]

impl<'a> From<&'a Unit<Quaternion<f32>>> for Model
[src]

Auto Trait Implementations

impl<T> Send for Unit<T> where
    T: Send

impl<T> Sync for Unit<T> where
    T: Sync

Blanket Implementations

impl<T, U> Into for T where
    U: From<T>, 
[src]

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

impl<T> From for T
[src]

impl<T, U> TryFrom for T where
    T: From<U>, 
[src]

🔬 This is a nightly-only experimental API. (try_from)

The type returned in the event of a conversion error.

impl<T> Borrow for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T, U> TryInto for T where
    U: TryFrom<T>, 
[src]

🔬 This is a nightly-only experimental API. (try_from)

The type returned in the event of a conversion error.

impl<T> BorrowMut for T where
    T: ?Sized
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<dyn AsRef<[u32; 3]> + 'static>,
    U: Deref<Target = T>, 
[src]

impl<A> AsUniform for A where
    A: AsRef<u32>, 
[src]

impl<T> AsUniform for T where
    T: AsRef<[u32; 2]>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<[i32; 2]>,
    U: Deref<Target = T>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<dyn AsRef<[f32; 4]> + 'static>,
    U: Deref<Target = T>, 
[src]

impl<T> AsUniform for T where
    T: AsRef<[f32; 4]>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<dyn AsRef<[i32; 2]> + 'static>,
    U: Deref<Target = T>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<dyn AsRef<[i32; 3]> + 'static>,
    U: Deref<Target = T>, 
[src]

impl<T> AsUniform for T where
    T: AsRef<[f32; 2]>, 
[src]

impl<T> AsUniform for T where
    T: AsRef<[u32; 4]>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<dyn AsRef<[u32; 4]> + 'static>,
    U: Deref<Target = T>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<dyn AsRef<u32> + 'static>,
    U: Deref<Target = T>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<[u32; 2]>,
    U: Deref<Target = T>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<dyn AsRef<[i32; 4]> + 'static>,
    U: Deref<Target = T>, 
[src]

impl<A> AsUniform for A where
    A: AsRef<i32>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<[f32; 2]>,
    U: Deref<Target = T>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<[u32; 3]>,
    U: Deref<Target = T>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<[[f32; 4]; 4]>,
    U: Deref<Target = T>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<[[f32; 3]; 3]>,
    U: Deref<Target = T>, 
[src]

impl<T> AsUniform for T where
    T: AsRef<[f32; 3]>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<dyn AsRef<[u32; 2]> + 'static>,
    U: Deref<Target = T>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<dyn AsRef<[[f32; 4]; 4]> + 'static>,
    U: Deref<Target = T>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<u32>,
    U: Deref<Target = T>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<dyn AsRef<i32> + 'static>,
    U: Deref<Target = T>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<dyn AsRef<[[f32; 3]; 3]> + 'static>,
    U: Deref<Target = T>, 
[src]

impl<T> AsUniform for T where
    T: AsRef<[i32; 4]>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<i32>,
    U: Deref<Target = T>, 
[src]

impl<T> AsUniform for T where
    T: AsRef<[[f32; 3]; 3]>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<dyn AsRef<[f32; 3]> + 'static>,
    U: Deref<Target = T>, 
[src]

impl<T> AsUniform for T where
    T: AsRef<[i32; 2]>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<[f32; 3]>,
    U: Deref<Target = T>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<[i32; 3]>,
    U: Deref<Target = T>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<dyn AsRef<[f32; 2]> + 'static>,
    U: Deref<Target = T>, 
[src]

impl<T> AsUniform for T where
    T: AsRef<[f32; 9]>, 
[src]

impl<T> AsUniform for T where
    T: AsRef<[u32; 3]>, 
[src]

impl<T> AsUniform for T where
    T: AsRef<[[f32; 4]; 4]>, 
[src]

impl<A> AsUniform for A where
    A: AsRef<f32>, 
[src]

impl<T> AsUniform for T where
    T: AsRef<[i32; 3]>, 
[src]

impl<U, T> AsUniform for U where
    T: AsUniform<dyn AsRef<f32> + 'static>,
    U: Deref<Target = T>, 
[src]

impl<T> Any for T where
    T: Any
[src]

impl<T> SetParameter for T
[src]

Sets value as a parameter of self.

impl<T> DeserializeOwned for T where
    T: Deserialize<'de>, 
[src]

impl<V> IntoVec for V
[src]

impl<T> IntoPnt for T where
    T: Scalar
[src]

impl<T> IntoPnt for T where
    T: Scalar
[src]

impl<T> IntoPnt for T where
    T: Scalar
[src]

impl<V> IntoPnt for V
[src]

impl<T> Scalar for T where
    T: Copy + PartialEq<T> + Any + Debug
[src]

Tests if Self the same as the type T Read more

impl<T, Right> ClosedDiv for T where
    T: Div<Right, Output = T> + DivAssign<Right>, 
[src]

impl<SS, SP> SupersetOf for SP where
    SS: SubsetOf<SP>, 
[src]

impl<T, Right> ClosedMul for T where
    T: Mul<Right, Output = T> + MulAssign<Right>, 
[src]

impl<T> ClosedNeg for T where
    T: Neg<Output = T>, 
[src]

impl<R, E> Transformation for R where
    E: EuclideanSpace<Real = R>,
    R: Real,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg
[src]

impl<R, E> ProjectiveTransformation for R where
    E: EuclideanSpace<Real = R>,
    R: Real,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg
[src]

impl<R, E> AffineTransformation for R where
    E: EuclideanSpace<Real = R>,
    R: Real,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg
[src]

Type of the first rotation to be applied.

Type of the non-uniform scaling to be applied.

The type of the pure translation part of this affine transformation.

Appends to this similarity a rotation centered at the point p, i.e., this point is left invariant. Read more

impl<R, E> Similarity for R where
    E: EuclideanSpace<Real = R>,
    R: Real + SubsetOf<R>,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg
[src]

The type of the pure (uniform) scaling part of this similarity transformation.

Applies this transformation's pure translational part to a point.

Applies this transformation's pure rotational part to a point.

Applies this transformation's pure scaling part to a point.

Applies this transformation's pure rotational part to a vector.

Applies this transformation's pure scaling part to a vector.

Applies this transformation inverse's pure translational part to a point.

Applies this transformation inverse's pure rotational part to a point.

Applies this transformation inverse's pure scaling part to a point.

Applies this transformation inverse's pure rotational part to a vector.

Applies this transformation inverse's pure scaling part to a vector.

impl<T> MultiplicativeMonoid for T where
    T: AbstractMonoid<Multiplicative> + MultiplicativeSemigroup + One
[src]

impl<T> MultiplicativeGroup for T where
    T: AbstractGroup<Multiplicative> + MultiplicativeLoop + MultiplicativeMonoid
[src]

impl<T> Same for T
[src]

Should always be Self

impl<T> Rand for T where
    Standard: Distribution<T>, 
[src]

impl<T> MultiplicativeMagma for T where
    T: AbstractMagma<Multiplicative>, 
[src]

impl<T> MultiplicativeQuasigroup for T where
    T: AbstractQuasigroup<Multiplicative> + ClosedDiv<T> + MultiplicativeMagma
[src]

impl<T> MultiplicativeLoop for T where
    T: AbstractLoop<Multiplicative> + MultiplicativeQuasigroup + One
[src]

impl<T> MultiplicativeSemigroup for T where
    T: AbstractSemigroup<Multiplicative> + ClosedMul<T> + MultiplicativeMagma
[src]