Type Definition dual_quat::DualQuaternion[][src]

type DualQuaternion<T> = Dual<Quaternion<T>>;

Implementations

impl<T> DualQuaternion<T> where
    T: SimdRealField + Mul<Output = T> + Div<Output = T> + Copy,
    T::Element: SimdRealField
[src]

pub fn rigid_transformation(
    q: UnitQuaternion<T>,
    t: Vector3<T>
) -> DualQuaternion<T>
[src]

pub fn from_real(v: T) -> DualQuaternion<T>[src]

pub fn conjugate(&self) -> DualQuaternion<T>[src]

pub fn norm_squared(&self) -> Dual<T>[src]

pub fn norm(&self) -> Dual<T>[src]

pub fn magnitude(&self) -> Dual<T>[src]

pub fn normalize(&self) -> DualQuaternion<T>[src]

pub fn squared(&self) -> DualQuaternion<T>[src]

pub fn rotation(&self) -> UnitQuaternion<T>[src]

pub fn translation(self) -> Vector3<T>[src]

pub fn transform(&self, v: &Point3<T>) -> Point3<T>[src]

pub fn transform_normal(&self, n: &Vector3<T>) -> Vector3<T>[src]

pub fn transform_position_and_normal(
    &self,
    p: &Point3<T>,
    n: &Vector3<T>
) -> (Point3<T>, Vector3<T>)
[src]

Trait Implementations

impl<N: SimdRealField> Div<N> for DualQuaternion<N> where
    N::Element: SimdRealField
[src]

type Output = Self

The resulting type after applying the / operator.

impl<N: SimdRealField> DivAssign<N> for DualQuaternion<N> where
    N::Element: SimdRealField
[src]

impl<N: RealField> From<Matrix<N, U4, U4, <DefaultAllocator as Allocator<N, U4, U4>>::Buffer>> for DualQuaternion<N>[src]

impl<N: SimdRealField> Mul<N> for DualQuaternion<N> where
    N::Element: SimdRealField
[src]

type Output = Self

The resulting type after applying the * operator.

impl<N: SimdRealField> MulAssign<N> for DualQuaternion<N> where
    N::Element: SimdRealField
[src]

impl<N: SimdRealField> One for DualQuaternion<N> where
    N::Element: SimdRealField
[src]

impl<N: SimdRealField> Zero for DualQuaternion<N> where
    N::Element: SimdRealField
[src]