Struct half::f16 [−][src]
#[repr(transparent)]pub struct f16(_);
A 16-bit floating point type implementing the IEEE 754-2008 standard binary16
a.k.a half
format.
This 16-bit floating point type is intended for efficient storage where the full range and
precision of a larger floating point value is not required. Because f16
is primarily for
efficient storage, floating point operations such as addition, multiplication, etc. are not
implemented. Operations should be performed with f32
or higher-precision types and converted
to/from f16
as necessary.
Implementations
impl f16
[src]
impl f16
[src]pub const fn from_bits(bits: u16) -> f16
[src]
Constructs a 16-bit floating point value from the raw bits.
pub fn from_f32(value: f32) -> f16
[src]
Constructs a 16-bit floating point value from a 32-bit floating point value.
If the 32-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals or ±0. All other values are truncated and rounded to the nearest representable 16-bit value.
pub fn from_f64(value: f64) -> f16
[src]
Constructs a 16-bit floating point value from a 64-bit floating point value.
If the 64-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals or ±0. All other values are truncated and rounded to the nearest representable 16-bit value.
pub const fn to_bits(self) -> u16
[src]
Converts a f16
into the underlying bit representation.
pub fn to_le_bytes(self) -> [u8; 2]
[src]
Return the memory representation of the underlying bit representation as a byte array in little-endian byte order.
Examples
let bytes = f16::from_f32(12.5).to_le_bytes(); assert_eq!(bytes, [0x40, 0x4A]);
pub fn to_be_bytes(self) -> [u8; 2]
[src]
Return the memory representation of the underlying bit representation as a byte array in big-endian (network) byte order.
Examples
let bytes = f16::from_f32(12.5).to_be_bytes(); assert_eq!(bytes, [0x4A, 0x40]);
pub fn to_ne_bytes(self) -> [u8; 2]
[src]
Return the memory representation of the underlying bit representation as a byte array in native byte order.
As the target platform’s native endianness is used, portable code should use to_be_bytes
or to_le_bytes
, as appropriate, instead.
Examples
let bytes = f16::from_f32(12.5).to_ne_bytes(); assert_eq!(bytes, if cfg!(target_endian = "big") { [0x4A, 0x40] } else { [0x40, 0x4A] });
pub fn from_le_bytes(bytes: [u8; 2]) -> f16
[src]
Create a floating point value from its representation as a byte array in little endian.
Examples
let value = f16::from_le_bytes([0x40, 0x4A]); assert_eq!(value, f16::from_f32(12.5));
pub fn from_be_bytes(bytes: [u8; 2]) -> f16
[src]
Create a floating point value from its representation as a byte array in big endian.
Examples
let value = f16::from_be_bytes([0x4A, 0x40]); assert_eq!(value, f16::from_f32(12.5));
pub fn from_ne_bytes(bytes: [u8; 2]) -> f16
[src]
Create a floating point value from its representation as a byte array in native endian.
As the target platform’s native endianness is used, portable code likely wants to use
from_be_bytes
or from_le_bytes
, as appropriate instead.
Examples
let value = f16::from_ne_bytes(if cfg!(target_endian = "big") { [0x4A, 0x40] } else { [0x40, 0x4A] }); assert_eq!(value, f16::from_f32(12.5));
pub fn as_bits(self) -> u16
[src]
renamed to to_bits
Converts a f16
into the underlying bit representation.
pub fn to_f32(self) -> f32
[src]
Converts a f16
value into a f32
value.
This conversion is lossless as all 16-bit floating point values can be represented exactly in 32-bit floating point.
pub fn to_f64(self) -> f64
[src]
Converts a f16
value into a f64
value.
This conversion is lossless as all 16-bit floating point values can be represented exactly in 64-bit floating point.
pub const fn is_nan(self) -> bool
[src]
Returns true
if this value is NaN
and false
otherwise.
Examples
let nan = f16::NAN; let f = f16::from_f32(7.0_f32); assert!(nan.is_nan()); assert!(!f.is_nan());
pub const fn is_infinite(self) -> bool
[src]
Returns true
if this value is ±∞ and false
otherwise.
Examples
let f = f16::from_f32(7.0f32); let inf = f16::INFINITY; let neg_inf = f16::NEG_INFINITY; let nan = f16::NAN; assert!(!f.is_infinite()); assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite());
pub const fn is_finite(self) -> bool
[src]
Returns true
if this number is neither infinite nor NaN
.
Examples
let f = f16::from_f32(7.0f32); let inf = f16::INFINITY; let neg_inf = f16::NEG_INFINITY; let nan = f16::NAN; assert!(f.is_finite()); assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite());
pub fn is_normal(self) -> bool
[src]
Returns true
if the number is neither zero, infinite, subnormal, or NaN
.
Examples
let min = f16::MIN_POSITIVE; let max = f16::MAX; let lower_than_min = f16::from_f32(1.0e-10_f32); let zero = f16::from_f32(0.0_f32); assert!(min.is_normal()); assert!(max.is_normal()); assert!(!zero.is_normal()); assert!(!f16::NAN.is_normal()); assert!(!f16::INFINITY.is_normal()); // Values between `0` and `min` are Subnormal. assert!(!lower_than_min.is_normal());
pub fn classify(self) -> FpCategory
[src]
Returns the floating point category of the number.
If only one property is going to be tested, it is generally faster to use the specific predicate instead.
Examples
use std::num::FpCategory; let num = f16::from_f32(12.4_f32); let inf = f16::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite);
pub fn signum(self) -> f16
[src]
Returns a number that represents the sign of self
.
1.0
if the number is positive,+0.0
orINFINITY
-1.0
if the number is negative,-0.0
orNEG_INFINITY
NAN
if the number isNAN
Examples
let f = f16::from_f32(3.5_f32); assert_eq!(f.signum(), f16::from_f32(1.0)); assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0)); assert!(f16::NAN.signum().is_nan());
pub const fn is_sign_positive(self) -> bool
[src]
Returns true
if and only if self
has a positive sign, including +0.0
, NaNs
with a
positive sign bit and +∞.
Examples
let nan = f16::NAN; let f = f16::from_f32(7.0_f32); let g = f16::from_f32(-7.0_f32); assert!(f.is_sign_positive()); assert!(!g.is_sign_positive()); // `NaN` can be either positive or negative assert!(nan.is_sign_positive() != nan.is_sign_negative());
pub const fn is_sign_negative(self) -> bool
[src]
Returns true
if and only if self
has a negative sign, including -0.0
, NaNs
with a
negative sign bit and −∞.
Examples
let nan = f16::NAN; let f = f16::from_f32(7.0f32); let g = f16::from_f32(-7.0f32); assert!(!f.is_sign_negative()); assert!(g.is_sign_negative()); // `NaN` can be either positive or negative assert!(nan.is_sign_positive() != nan.is_sign_negative());
pub const DIGITS: u32
[src]
Approximate number of f16
significant digits in base 10.
pub const EPSILON: f16
[src]
f16
machine epsilon value.
This is the difference between 1.0 and the next largest representable number.
pub const INFINITY: f16
[src]
f16
positive Infinity (+∞).
pub const MANTISSA_DIGITS: u32
[src]
Number of f16
significant digits in base 2.
pub const MAX: f16
[src]
Largest finite f16
value.
pub const MAX_10_EXP: i32
[src]
Maximum possible f16
power of 10 exponent.
pub const MAX_EXP: i32
[src]
Maximum possible f16
power of 2 exponent.
pub const MIN: f16
[src]
Smallest finite f16
value.
pub const MIN_10_EXP: i32
[src]
Minimum possible normal f16
power of 10 exponent.
pub const MIN_EXP: i32
[src]
One greater than the minimum possible normal f16
power of 2 exponent.
pub const MIN_POSITIVE: f16
[src]
Smallest positive normal f16
value.
pub const NAN: f16
[src]
f16
Not a Number (NaN).
pub const NEG_INFINITY: f16
[src]
f16
negative infinity (-∞).
pub const RADIX: u32
[src]
The radix or base of the internal representation of f16
.
pub const MIN_POSITIVE_SUBNORMAL: f16
[src]
Minimum positive subnormal f16
value.
pub const MAX_SUBNORMAL: f16
[src]
Maximum subnormal f16
value.
pub const ONE: f16
[src]
f16
1
pub const ZERO: f16
[src]
f16
0
pub const NEG_ZERO: f16
[src]
f16
-0
pub const E: f16
[src]
f16
Euler’s number (ℯ).
pub const PI: f16
[src]
f16
Archimedes’ constant (π).
pub const FRAC_1_PI: f16
[src]
f16
1/π
pub const FRAC_1_SQRT_2: f16
[src]
f16
1/√2
pub const FRAC_2_PI: f16
[src]
f16
2/π
pub const FRAC_2_SQRT_PI: f16
[src]
f16
2/√π
pub const FRAC_PI_2: f16
[src]
f16
π/2
pub const FRAC_PI_3: f16
[src]
f16
π/3
pub const FRAC_PI_4: f16
[src]
f16
π/4
pub const FRAC_PI_6: f16
[src]
f16
π/6
pub const FRAC_PI_8: f16
[src]
f16
π/8
pub const LN_10: f16
[src]
f16
𝗅𝗇 10
pub const LN_2: f16
[src]
f16
𝗅𝗇 2
pub const LOG10_E: f16
[src]
f16
𝗅𝗈𝗀₁₀ℯ
pub const LOG10_2: f16
[src]
f16
𝗅𝗈𝗀₁₀2
pub const LOG2_E: f16
[src]
f16
𝗅𝗈𝗀₂ℯ
pub const LOG2_10: f16
[src]
f16
𝗅𝗈𝗀₂10
pub const SQRT_2: f16
[src]
f16
√2
Trait Implementations
impl Clone for f16
[src]
impl Clone for f16
[src]fn clone(&self) -> f16
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl FromStr for f16
[src]
impl FromStr for f16
[src]type Err = ParseFloatError
The associated error which can be returned from parsing.
fn from_str(src: &str) -> Result<f16, ParseFloatError>
[src]
impl PartialOrd<f16> for f16
[src]
impl PartialOrd<f16> for f16
[src]