Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
use crate::{RealField, Rotation2, Rotation3, SimdRealField, UnitComplex, UnitQuaternion};

/// # Interpolation
impl<N: SimdRealField> Rotation2<N> {
    /// Spherical linear interpolation between two rotation matrices.
    ///
    /// # Examples:
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::geometry::Rotation2;
    ///
    /// let rot1 = Rotation2::new(std::f32::consts::FRAC_PI_4);
    /// let rot2 = Rotation2::new(-std::f32::consts::PI);
    ///
    /// let rot = rot1.slerp(&rot2, 1.0 / 3.0);
    ///
    /// assert_relative_eq!(rot.angle(), std::f32::consts::FRAC_PI_2);
    /// ```
    #[inline]
    pub fn slerp(&self, other: &Self, t: N) -> Self
    where
        N::Element: SimdRealField,
    {
        let c1 = UnitComplex::from(*self);
        let c2 = UnitComplex::from(*other);
        c1.slerp(&c2, t).into()
    }
}

impl<N: SimdRealField> Rotation3<N> {
    /// Spherical linear interpolation between two rotation matrices.
    ///
    /// Panics if the angle between both rotations is 180 degrees (in which case the interpolation
    /// is not well-defined). Use `.try_slerp` instead to avoid the panic.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::geometry::Rotation3;
    ///
    /// let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
    /// let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
    ///
    /// let q = q1.slerp(&q2, 1.0 / 3.0);
    ///
    /// assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
    /// ```
    #[inline]
    pub fn slerp(&self, other: &Self, t: N) -> Self
    where
        N: RealField,
    {
        let q1 = UnitQuaternion::from(*self);
        let q2 = UnitQuaternion::from(*other);
        q1.slerp(&q2, t).into()
    }

    /// Computes the spherical linear interpolation between two rotation matrices or returns `None`
    /// if both rotations are approximately 180 degrees apart (in which case the interpolation is
    /// not well-defined).
    ///
    /// # Arguments
    /// * `self`: the first rotation to interpolate from.
    /// * `other`: the second rotation to interpolate toward.
    /// * `t`: the interpolation parameter. Should be between 0 and 1.
    /// * `epsilon`: the value below which the sinus of the angle separating both rotations
    /// must be to return `None`.
    #[inline]
    pub fn try_slerp(&self, other: &Self, t: N, epsilon: N) -> Option<Self>
    where
        N: RealField,
    {
        let q1 = Rotation3::from(*self);
        let q2 = Rotation3::from(*other);
        q1.try_slerp(&q2, t, epsilon).map(|q| q.into())
    }
}