Struct rin::math::geometry::Orthographic3 [−][src]
pub struct Orthographic3<N> where
N: RealField, { /* fields omitted */ }
A 3D orthographic projection stored as a homogeneous 4x4 matrix.
Implementations
impl<N> Orthographic3<N> where
N: RealField,
[src]
impl<N> Orthographic3<N> where
N: RealField,
[src]pub fn new(
left: N,
right: N,
bottom: N,
top: N,
znear: N,
zfar: N
) -> Orthographic3<N>
[src]
left: N,
right: N,
bottom: N,
top: N,
znear: N,
zfar: N
) -> Orthographic3<N>
Creates a new orthographic projection matrix.
This follows the OpenGL convention, so this will flip the z
axis.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); // Check this projection actually transforms the view cuboid into the double-unit cube. // See https://www.nalgebra.org/projections/#orthographic-projection for more details. let p1 = Point3::new(1.0, 2.0, -0.1); let p2 = Point3::new(1.0, 2.0, -1000.0); let p3 = Point3::new(1.0, 20.0, -0.1); let p4 = Point3::new(1.0, 20.0, -1000.0); let p5 = Point3::new(10.0, 2.0, -0.1); let p6 = Point3::new(10.0, 2.0, -1000.0); let p7 = Point3::new(10.0, 20.0, -0.1); let p8 = Point3::new(10.0, 20.0, -1000.0); assert_relative_eq!(proj.project_point(&p1), Point3::new(-1.0, -1.0, -1.0)); assert_relative_eq!(proj.project_point(&p2), Point3::new(-1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p3), Point3::new(-1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p4), Point3::new(-1.0, 1.0, 1.0)); assert_relative_eq!(proj.project_point(&p5), Point3::new( 1.0, -1.0, -1.0)); assert_relative_eq!(proj.project_point(&p6), Point3::new( 1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p7), Point3::new( 1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p8), Point3::new( 1.0, 1.0, 1.0)); // This also works with flipped axis. In other words, we allow that // `left > right`, `bottom > top`, and/or `znear > zfar`. let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.project_point(&p1), Point3::new( 1.0, 1.0, 1.0)); assert_relative_eq!(proj.project_point(&p2), Point3::new( 1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p3), Point3::new( 1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p4), Point3::new( 1.0, -1.0, -1.0)); assert_relative_eq!(proj.project_point(&p5), Point3::new(-1.0, 1.0, 1.0)); assert_relative_eq!(proj.project_point(&p6), Point3::new(-1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p7), Point3::new(-1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p8), Point3::new(-1.0, -1.0, -1.0));
pub fn from_matrix_unchecked(
matrix: Matrix<N, U4, U4, <DefaultAllocator as Allocator<N, U4, U4>>::Buffer>
) -> Orthographic3<N>
[src]
matrix: Matrix<N, U4, U4, <DefaultAllocator as Allocator<N, U4, U4>>::Buffer>
) -> Orthographic3<N>
Wraps the given matrix to interpret it as a 3D orthographic matrix.
It is not checked whether or not the given matrix actually represents an orthographic projection.
Example
let mat = Matrix4::new( 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0, 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0, 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9, 0.0, 0.0, 0.0, 1.0 ); let proj = Orthographic3::from_matrix_unchecked(mat); assert_eq!(proj, Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0));
pub fn from_fov(aspect: N, vfov: N, znear: N, zfar: N) -> Orthographic3<N>
[src]
Creates a new orthographic projection matrix from an aspect ratio and the vertical field of view.
pub fn inverse(
&self
) -> Matrix<N, U4, U4, <DefaultAllocator as Allocator<N, U4, U4>>::Buffer>
[src]
&self
) -> Matrix<N, U4, U4, <DefaultAllocator as Allocator<N, U4, U4>>::Buffer>
Retrieves the inverse of the underlying homogeneous matrix.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let inv = proj.inverse(); assert_relative_eq!(inv * proj.as_matrix(), Matrix4::identity()); assert_relative_eq!(proj.as_matrix() * inv, Matrix4::identity()); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); let inv = proj.inverse(); assert_relative_eq!(inv * proj.as_matrix(), Matrix4::identity()); assert_relative_eq!(proj.as_matrix() * inv, Matrix4::identity());
pub fn to_homogeneous(
&self
) -> Matrix<N, U4, U4, <DefaultAllocator as Allocator<N, U4, U4>>::Buffer>
[src]
&self
) -> Matrix<N, U4, U4, <DefaultAllocator as Allocator<N, U4, U4>>::Buffer>
Computes the corresponding homogeneous matrix.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let expected = Matrix4::new( 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0, 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0, 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9, 0.0, 0.0, 0.0, 1.0 ); assert_eq!(proj.to_homogeneous(), expected);
pub fn as_matrix(
&self
) -> &Matrix<N, U4, U4, <DefaultAllocator as Allocator<N, U4, U4>>::Buffer>
[src]
&self
) -> &Matrix<N, U4, U4, <DefaultAllocator as Allocator<N, U4, U4>>::Buffer>
A reference to the underlying homogeneous transformation matrix.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let expected = Matrix4::new( 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0, 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0, 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9, 0.0, 0.0, 0.0, 1.0 ); assert_eq!(*proj.as_matrix(), expected);
pub fn as_projective(&self) -> &Transform<N, U3, TProjective>
[src]
A reference to this transformation seen as a Projective3
.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_eq!(proj.as_projective().to_homogeneous(), proj.to_homogeneous());
pub fn to_projective(&self) -> Transform<N, U3, TProjective>
[src]
This transformation seen as a Projective3
.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_eq!(proj.to_projective().to_homogeneous(), proj.to_homogeneous());
pub fn into_inner(
self
) -> Matrix<N, U4, U4, <DefaultAllocator as Allocator<N, U4, U4>>::Buffer>
[src]
self
) -> Matrix<N, U4, U4, <DefaultAllocator as Allocator<N, U4, U4>>::Buffer>
Retrieves the underlying homogeneous matrix.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let expected = Matrix4::new( 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0, 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0, 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9, 0.0, 0.0, 0.0, 1.0 ); assert_eq!(proj.into_inner(), expected);
pub fn unwrap(
self
) -> Matrix<N, U4, U4, <DefaultAllocator as Allocator<N, U4, U4>>::Buffer>
[src]
self
) -> Matrix<N, U4, U4, <DefaultAllocator as Allocator<N, U4, U4>>::Buffer>
use .into_inner()
instead
Retrieves the underlying homogeneous matrix. Deprecated: Use Orthographic3::into_inner instead.
pub fn left(&self) -> N
[src]
The left offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.left(), 1.0, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.left(), 10.0, epsilon = 1.0e-6);
pub fn right(&self) -> N
[src]
The right offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.right(), 10.0, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.right(), 1.0, epsilon = 1.0e-6);
pub fn bottom(&self) -> N
[src]
The bottom offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.bottom(), 2.0, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.bottom(), 20.0, epsilon = 1.0e-6);
pub fn top(&self) -> N
[src]
The top offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.top(), 20.0, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.top(), 2.0, epsilon = 1.0e-6);
pub fn znear(&self) -> N
[src]
The near plane offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.znear(), 0.1, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.znear(), 1000.0, epsilon = 1.0e-6);
pub fn zfar(&self) -> N
[src]
The far plane offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.zfar(), 1000.0, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.zfar(), 0.1, epsilon = 1.0e-6);
pub fn project_point(&self, p: &Point<N, U3>) -> Point<N, U3>
[src]
Projects a point. Faster than matrix multiplication.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let p1 = Point3::new(1.0, 2.0, -0.1); let p2 = Point3::new(1.0, 2.0, -1000.0); let p3 = Point3::new(1.0, 20.0, -0.1); let p4 = Point3::new(1.0, 20.0, -1000.0); let p5 = Point3::new(10.0, 2.0, -0.1); let p6 = Point3::new(10.0, 2.0, -1000.0); let p7 = Point3::new(10.0, 20.0, -0.1); let p8 = Point3::new(10.0, 20.0, -1000.0); assert_relative_eq!(proj.project_point(&p1), Point3::new(-1.0, -1.0, -1.0)); assert_relative_eq!(proj.project_point(&p2), Point3::new(-1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p3), Point3::new(-1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p4), Point3::new(-1.0, 1.0, 1.0)); assert_relative_eq!(proj.project_point(&p5), Point3::new( 1.0, -1.0, -1.0)); assert_relative_eq!(proj.project_point(&p6), Point3::new( 1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p7), Point3::new( 1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p8), Point3::new( 1.0, 1.0, 1.0));
pub fn unproject_point(&self, p: &Point<N, U3>) -> Point<N, U3>
[src]
Un-projects a point. Faster than multiplication by the underlying matrix inverse.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let p1 = Point3::new(-1.0, -1.0, -1.0); let p2 = Point3::new(-1.0, -1.0, 1.0); let p3 = Point3::new(-1.0, 1.0, -1.0); let p4 = Point3::new(-1.0, 1.0, 1.0); let p5 = Point3::new( 1.0, -1.0, -1.0); let p6 = Point3::new( 1.0, -1.0, 1.0); let p7 = Point3::new( 1.0, 1.0, -1.0); let p8 = Point3::new( 1.0, 1.0, 1.0); assert_relative_eq!(proj.unproject_point(&p1), Point3::new(1.0, 2.0, -0.1), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p2), Point3::new(1.0, 2.0, -1000.0), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p3), Point3::new(1.0, 20.0, -0.1), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p4), Point3::new(1.0, 20.0, -1000.0), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p5), Point3::new(10.0, 2.0, -0.1), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p6), Point3::new(10.0, 2.0, -1000.0), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p7), Point3::new(10.0, 20.0, -0.1), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p8), Point3::new(10.0, 20.0, -1000.0), epsilon = 1.0e-6);
pub fn project_vector<SB>(
&self,
p: &Matrix<N, U3, U1, SB>
) -> Matrix<N, U3, U1, <DefaultAllocator as Allocator<N, U3, U1>>::Buffer> where
SB: Storage<N, U3, U1>,
[src]
&self,
p: &Matrix<N, U3, U1, SB>
) -> Matrix<N, U3, U1, <DefaultAllocator as Allocator<N, U3, U1>>::Buffer> where
SB: Storage<N, U3, U1>,
Projects a vector. Faster than matrix multiplication.
Vectors are not affected by the translation part of the projection.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let v1 = Vector3::x(); let v2 = Vector3::y(); let v3 = Vector3::z(); assert_relative_eq!(proj.project_vector(&v1), Vector3::x() * 2.0 / 9.0); assert_relative_eq!(proj.project_vector(&v2), Vector3::y() * 2.0 / 18.0); assert_relative_eq!(proj.project_vector(&v3), Vector3::z() * -2.0 / 999.9);
pub fn set_left(&mut self, left: N)
[src]
Sets the left offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_left(2.0); assert_relative_eq!(proj.left(), 2.0, epsilon = 1.0e-6); // It is OK to set a left offset greater than the current right offset. proj.set_left(20.0); assert_relative_eq!(proj.left(), 20.0, epsilon = 1.0e-6);
pub fn set_right(&mut self, right: N)
[src]
Sets the right offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_right(15.0); assert_relative_eq!(proj.right(), 15.0, epsilon = 1.0e-6); // It is OK to set a right offset smaller than the current left offset. proj.set_right(-3.0); assert_relative_eq!(proj.right(), -3.0, epsilon = 1.0e-6);
pub fn set_bottom(&mut self, bottom: N)
[src]
Sets the bottom offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_bottom(8.0); assert_relative_eq!(proj.bottom(), 8.0, epsilon = 1.0e-6); // It is OK to set a bottom offset greater than the current top offset. proj.set_bottom(50.0); assert_relative_eq!(proj.bottom(), 50.0, epsilon = 1.0e-6);
pub fn set_top(&mut self, top: N)
[src]
Sets the top offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_top(15.0); assert_relative_eq!(proj.top(), 15.0, epsilon = 1.0e-6); // It is OK to set a top offset smaller than the current bottom offset. proj.set_top(-3.0); assert_relative_eq!(proj.top(), -3.0, epsilon = 1.0e-6);
pub fn set_znear(&mut self, znear: N)
[src]
Sets the near plane offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_znear(8.0); assert_relative_eq!(proj.znear(), 8.0, epsilon = 1.0e-6); // It is OK to set a znear greater than the current zfar. proj.set_znear(5000.0); assert_relative_eq!(proj.znear(), 5000.0, epsilon = 1.0e-6);
pub fn set_zfar(&mut self, zfar: N)
[src]
Sets the far plane offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_zfar(15.0); assert_relative_eq!(proj.zfar(), 15.0, epsilon = 1.0e-6); // It is OK to set a zfar smaller than the current znear. proj.set_zfar(-3.0); assert_relative_eq!(proj.zfar(), -3.0, epsilon = 1.0e-6);
pub fn set_left_and_right(&mut self, left: N, right: N)
[src]
Sets the view cuboid offsets along the x
axis.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_left_and_right(7.0, 70.0); assert_relative_eq!(proj.left(), 7.0, epsilon = 1.0e-6); assert_relative_eq!(proj.right(), 70.0, epsilon = 1.0e-6); // It is also OK to have `left > right`. proj.set_left_and_right(70.0, 7.0); assert_relative_eq!(proj.left(), 70.0, epsilon = 1.0e-6); assert_relative_eq!(proj.right(), 7.0, epsilon = 1.0e-6);
pub fn set_bottom_and_top(&mut self, bottom: N, top: N)
[src]
Sets the view cuboid offsets along the y
axis.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_bottom_and_top(7.0, 70.0); assert_relative_eq!(proj.bottom(), 7.0, epsilon = 1.0e-6); assert_relative_eq!(proj.top(), 70.0, epsilon = 1.0e-6); // It is also OK to have `bottom > top`. proj.set_bottom_and_top(70.0, 7.0); assert_relative_eq!(proj.bottom(), 70.0, epsilon = 1.0e-6); assert_relative_eq!(proj.top(), 7.0, epsilon = 1.0e-6);
pub fn set_znear_and_zfar(&mut self, znear: N, zfar: N)
[src]
Sets the near and far plane offsets of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_znear_and_zfar(50.0, 5000.0); assert_relative_eq!(proj.znear(), 50.0, epsilon = 1.0e-6); assert_relative_eq!(proj.zfar(), 5000.0, epsilon = 1.0e-6); // It is also OK to have `znear > zfar`. proj.set_znear_and_zfar(5000.0, 0.5); assert_relative_eq!(proj.znear(), 5000.0, epsilon = 1.0e-6); assert_relative_eq!(proj.zfar(), 0.5, epsilon = 1.0e-6);
Trait Implementations
impl<T> AsMat<Matrix<T, U4, U4, <DefaultAllocator as Allocator<T, U4, U4>>::Buffer>> for Orthographic3<T> where
T: RealField,
[src]
impl<T> AsMat<Matrix<T, U4, U4, <DefaultAllocator as Allocator<T, U4, U4>>::Buffer>> for Orthographic3<T> where
T: RealField,
[src]impl<N> Clone for Orthographic3<N> where
N: RealField,
[src]
impl<N> Clone for Orthographic3<N> where
N: RealField,
[src]pub fn clone(&self) -> Orthographic3<N>
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl<N> Debug for Orthographic3<N> where
N: RealField,
[src]
impl<N> Debug for Orthographic3<N> where
N: RealField,
[src]impl<'a, N> Deserialize<'a> for Orthographic3<N> where
N: RealField + Deserialize<'a>,
[src]
impl<'a, N> Deserialize<'a> for Orthographic3<N> where
N: RealField + Deserialize<'a>,
[src]pub fn deserialize<Des>(
deserializer: Des
) -> Result<Orthographic3<N>, <Des as Deserializer<'a>>::Error> where
Des: Deserializer<'a>,
[src]
deserializer: Des
) -> Result<Orthographic3<N>, <Des as Deserializer<'a>>::Error> where
Des: Deserializer<'a>,
impl<N> From<Orthographic3<N>> for Matrix<N, U4, U4, <DefaultAllocator as Allocator<N, U4, U4>>::Buffer> where
N: RealField,
[src]
impl<N> From<Orthographic3<N>> for Matrix<N, U4, U4, <DefaultAllocator as Allocator<N, U4, U4>>::Buffer> where
N: RealField,
[src]impl<N> PartialEq<Orthographic3<N>> for Orthographic3<N> where
N: RealField,
[src]
impl<N> PartialEq<Orthographic3<N>> for Orthographic3<N> where
N: RealField,
[src]impl<N> Serialize for Orthographic3<N> where
N: RealField + Serialize,
[src]
impl<N> Serialize for Orthographic3<N> where
N: RealField + Serialize,
[src]pub fn serialize<S>(
&self,
serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> where
S: Serializer,
[src]
&self,
serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> where
S: Serializer,
impl<T> ToMat<Matrix<T, U4, U4, <DefaultAllocator as Allocator<T, U4, U4>>::Buffer>> for Orthographic3<T> where
T: RealField,
[src]
impl<T> ToMat<Matrix<T, U4, U4, <DefaultAllocator as Allocator<T, U4, U4>>::Buffer>> for Orthographic3<T> where
T: RealField,
[src]impl<N> Copy for Orthographic3<N> where
N: RealField,
[src]
N: RealField,
Auto Trait Implementations
impl<N> RefUnwindSafe for Orthographic3<N> where
N: RefUnwindSafe,
N: RefUnwindSafe,
impl<N> Send for Orthographic3<N>
impl<N> Sync for Orthographic3<N>
impl<N> Unpin for Orthographic3<N> where
N: Unpin,
N: Unpin,
impl<N> UnwindSafe for Orthographic3<N> where
N: UnwindSafe,
N: UnwindSafe,
Blanket Implementations
impl<T> DowncastSync for T where
T: Any + Send + Sync,
[src]
impl<T> DowncastSync for T where
T: Any + Send + Sync,
[src]impl<T> Serialize for T where
T: Serialize + ?Sized,
[src]
impl<T> Serialize for T where
T: Serialize + ?Sized,
[src]pub fn erased_serialize(
&self,
serializer: &mut dyn Serializer
) -> Result<Ok, Error>
[src]
&self,
serializer: &mut dyn Serializer
) -> Result<Ok, Error>
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]pub fn to_subset(&self) -> Option<SS>
[src]
pub fn is_in_subset(&self) -> bool
[src]
pub fn to_subset_unchecked(&self) -> SS
[src]
pub fn from_subset(element: &SS) -> SP
[src]
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]pub fn to_subset(&self) -> Option<SS>
[src]
pub fn is_in_subset(&self) -> bool
[src]
pub fn to_subset_unchecked(&self) -> SS
[src]
pub fn from_subset(element: &SS) -> SP
[src]
impl<T> DeserializeOwned for T where
T: for<'de> Deserialize<'de>,
[src]
T: for<'de> Deserialize<'de>,
impl<T> Slottable for T where
T: Copy,
[src]
T: Copy,