Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
use std::u16;

use packed::pattern::Patterns;
use packed::rabinkarp::RabinKarp;
use packed::teddy::{self, Teddy};
use Match;

/// This is a limit placed on the total number of patterns we're willing to try
/// and match at once. As more sophisticated algorithms are added, this number
/// may be increased.
const PATTERN_LIMIT: usize = 128;

/// A knob for controlling the match semantics of a packed multiple string
/// searcher.
///
/// This differs from the
/// [`MatchKind`](../enum.MatchKind.html)
/// type in the top-level crate module in that it doesn't support
/// "standard" match semantics, and instead only supports leftmost-first or
/// leftmost-longest. Namely, "standard" semantics cannot be easily supported
/// by packed searchers.
///
/// For more information on the distinction between leftmost-first and
/// leftmost-longest, see the docs on the top-level `MatchKind` type.
///
/// Unlike the top-level `MatchKind` type, the default match semantics for this
/// type are leftmost-first.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum MatchKind {
    /// Use leftmost-first match semantics, which reports leftmost matches.
    /// When there are multiple possible leftmost matches, the match
    /// corresponding to the pattern that appeared earlier when constructing
    /// the automaton is reported.
    ///
    /// This is the default.
    LeftmostFirst,
    /// Use leftmost-longest match semantics, which reports leftmost matches.
    /// When there are multiple possible leftmost matches, the longest match
    /// is chosen.
    LeftmostLongest,
    /// Hints that destructuring should not be exhaustive.
    ///
    /// This enum may grow additional variants, so this makes sure clients
    /// don't count on exhaustive matching. (Otherwise, adding a new variant
    /// could break existing code.)
    #[doc(hidden)]
    __Nonexhaustive,
}

impl Default for MatchKind {
    fn default() -> MatchKind {
        MatchKind::LeftmostFirst
    }
}

/// The configuration for a packed multiple pattern searcher.
///
/// The configuration is currently limited only to being able to select the
/// match semantics (leftmost-first or leftmost-longest) of a searcher. In the
/// future, more knobs may be made available.
///
/// A configuration produces a [`packed::Builder`](struct.Builder.html), which
/// in turn can be used to construct a
/// [`packed::Searcher`](struct.Searcher.html) for searching.
///
/// # Example
///
/// This example shows how to use leftmost-longest semantics instead of the
/// default (leftmost-first).
///
/// ```
/// use aho_corasick::packed::{Config, MatchKind};
///
/// # fn example() -> Option<()> {
/// let searcher = Config::new()
///     .match_kind(MatchKind::LeftmostLongest)
///     .builder()
///     .add("foo")
///     .add("foobar")
///     .build()?;
/// let matches: Vec<usize> = searcher
///     .find_iter("foobar")
///     .map(|mat| mat.pattern())
///     .collect();
/// assert_eq!(vec![1], matches);
/// # Some(()) }
/// # if cfg!(target_arch = "x86_64") {
/// #     example().unwrap()
/// # } else {
/// #     assert!(example().is_none());
/// # }
/// ```
#[derive(Clone, Debug)]
pub struct Config {
    kind: MatchKind,
    force: Option<ForceAlgorithm>,
    force_teddy_fat: Option<bool>,
    force_avx: Option<bool>,
}

/// An internal option for forcing the use of a particular packed algorithm.
///
/// When an algorithm is forced, if a searcher could not be constructed for it,
/// then no searcher will be returned even if an alternative algorithm would
/// work.
#[derive(Clone, Debug)]
enum ForceAlgorithm {
    Teddy,
    RabinKarp,
}

impl Default for Config {
    fn default() -> Config {
        Config::new()
    }
}

impl Config {
    /// Create a new default configuration. A default configuration uses
    /// leftmost-first match semantics.
    pub fn new() -> Config {
        Config {
            kind: MatchKind::LeftmostFirst,
            force: None,
            force_teddy_fat: None,
            force_avx: None,
        }
    }

    /// Create a packed builder from this configuration. The builder can be
    /// used to accumulate patterns and create a
    /// [`Searcher`](struct.Searcher.html)
    /// from them.
    pub fn builder(&self) -> Builder {
        Builder::from_config(self.clone())
    }

    /// Set the match semantics for this configuration.
    pub fn match_kind(&mut self, kind: MatchKind) -> &mut Config {
        self.kind = kind;
        self
    }

    /// An undocumented method for forcing the use of the Teddy algorithm.
    ///
    /// This is only exposed for more precise testing and benchmarks. Callers
    /// should not use it as it is not part of the API stability guarantees of
    /// this crate.
    #[doc(hidden)]
    pub fn force_teddy(&mut self, yes: bool) -> &mut Config {
        if yes {
            self.force = Some(ForceAlgorithm::Teddy);
        } else {
            self.force = None;
        }
        self
    }

    /// An undocumented method for forcing the use of the Fat Teddy algorithm.
    ///
    /// This is only exposed for more precise testing and benchmarks. Callers
    /// should not use it as it is not part of the API stability guarantees of
    /// this crate.
    #[doc(hidden)]
    pub fn force_teddy_fat(&mut self, yes: Option<bool>) -> &mut Config {
        self.force_teddy_fat = yes;
        self
    }

    /// An undocumented method for forcing the use of SSE (`Some(false)`) or
    /// AVX (`Some(true)`) algorithms.
    ///
    /// This is only exposed for more precise testing and benchmarks. Callers
    /// should not use it as it is not part of the API stability guarantees of
    /// this crate.
    #[doc(hidden)]
    pub fn force_avx(&mut self, yes: Option<bool>) -> &mut Config {
        self.force_avx = yes;
        self
    }

    /// An undocumented method for forcing the use of the Rabin-Karp algorithm.
    ///
    /// This is only exposed for more precise testing and benchmarks. Callers
    /// should not use it as it is not part of the API stability guarantees of
    /// this crate.
    #[doc(hidden)]
    pub fn force_rabin_karp(&mut self, yes: bool) -> &mut Config {
        if yes {
            self.force = Some(ForceAlgorithm::RabinKarp);
        } else {
            self.force = None;
        }
        self
    }
}

/// A builder for constructing a packed searcher from a collection of patterns.
///
/// # Example
///
/// This example shows how to use a builder to construct a searcher. By
/// default, leftmost-first match semantics are used.
///
/// ```
/// use aho_corasick::packed::{Builder, MatchKind};
///
/// # fn example() -> Option<()> {
/// let searcher = Builder::new()
///     .add("foobar")
///     .add("foo")
///     .build()?;
/// let matches: Vec<usize> = searcher
///     .find_iter("foobar")
///     .map(|mat| mat.pattern())
///     .collect();
/// assert_eq!(vec![0], matches);
/// # Some(()) }
/// # if cfg!(target_arch = "x86_64") {
/// #     example().unwrap()
/// # } else {
/// #     assert!(example().is_none());
/// # }
/// ```
#[derive(Clone, Debug)]
pub struct Builder {
    /// The configuration of this builder and subsequent matcher.
    config: Config,
    /// Set to true if the builder detects that a matcher cannot be built.
    inert: bool,
    /// The patterns provided by the caller.
    patterns: Patterns,
}

impl Builder {
    /// Create a new builder for constructing a multi-pattern searcher. This
    /// constructor uses the default configuration.
    pub fn new() -> Builder {
        Builder::from_config(Config::new())
    }

    fn from_config(config: Config) -> Builder {
        Builder { config, inert: false, patterns: Patterns::new() }
    }

    /// Build a searcher from the patterns added to this builder so far.
    pub fn build(&self) -> Option<Searcher> {
        if self.inert || self.patterns.is_empty() {
            return None;
        }
        let mut patterns = self.patterns.clone();
        patterns.set_match_kind(self.config.kind);
        let rabinkarp = RabinKarp::new(&patterns);
        // Effectively, we only want to return a searcher if we can use Teddy,
        // since Teddy is our only fast packed searcher at the moment.
        // Rabin-Karp is only used when searching haystacks smaller than what
        // Teddy can support. Thus, the only way to get a Rabin-Karp searcher
        // is to force it using undocumented APIs (for tests/benchmarks).
        let (search_kind, minimum_len) = match self.config.force {
            None | Some(ForceAlgorithm::Teddy) => {
                let teddy = match self.build_teddy(&patterns) {
                    None => return None,
                    Some(teddy) => teddy,
                };
                let minimum_len = teddy.minimum_len();
                (SearchKind::Teddy(teddy), minimum_len)
            }
            Some(ForceAlgorithm::RabinKarp) => (SearchKind::RabinKarp, 0),
        };
        Some(Searcher {
            config: self.config.clone(),
            patterns,
            rabinkarp,
            search_kind,
            minimum_len,
        })
    }

    fn build_teddy(&self, patterns: &Patterns) -> Option<Teddy> {
        teddy::Builder::new()
            .avx(self.config.force_avx)
            .fat(self.config.force_teddy_fat)
            .build(&patterns)
    }

    /// Add the given pattern to this set to match.
    ///
    /// The order in which patterns are added is significant. Namely, when
    /// using leftmost-first match semantics, then when multiple patterns can
    /// match at a particular location, the pattern that was added first is
    /// used as the match.
    ///
    /// If the number of patterns added exceeds the amount supported by packed
    /// searchers, then the builder will stop accumulating patterns and render
    /// itself inert. At this point, constructing a searcher will always return
    /// `None`.
    pub fn add<P: AsRef<[u8]>>(&mut self, pattern: P) -> &mut Builder {
        if self.inert {
            return self;
        } else if self.patterns.len() >= PATTERN_LIMIT {
            self.inert = true;
            self.patterns.reset();
            return self;
        }
        // Just in case PATTERN_LIMIT increases beyond u16::MAX.
        assert!(self.patterns.len() <= u16::MAX as usize);

        let pattern = pattern.as_ref();
        if pattern.is_empty() {
            self.inert = true;
            self.patterns.reset();
            return self;
        }
        self.patterns.add(pattern);
        self
    }

    /// Add the given iterator of patterns to this set to match.
    ///
    /// The iterator must yield elements that can be converted into a `&[u8]`.
    ///
    /// The order in which patterns are added is significant. Namely, when
    /// using leftmost-first match semantics, then when multiple patterns can
    /// match at a particular location, the pattern that was added first is
    /// used as the match.
    ///
    /// If the number of patterns added exceeds the amount supported by packed
    /// searchers, then the builder will stop accumulating patterns and render
    /// itself inert. At this point, constructing a searcher will always return
    /// `None`.
    pub fn extend<I, P>(&mut self, patterns: I) -> &mut Builder
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        for p in patterns {
            self.add(p);
        }
        self
    }
}

impl Default for Builder {
    fn default() -> Builder {
        Builder::new()
    }
}

/// A packed searcher for quickly finding occurrences of multiple patterns.
///
/// If callers need more flexible construction, or if one wants to change the
/// match semantics (either leftmost-first or leftmost-longest), then one can
/// use the [`Config`](struct.Config.html) and/or
/// [`Builder`](struct.Builder.html) types for more fine grained control.
///
/// # Example
///
/// This example shows how to create a searcher from an iterator of patterns.
/// By default, leftmost-first match semantics are used.
///
/// ```
/// use aho_corasick::packed::{MatchKind, Searcher};
///
/// # fn example() -> Option<()> {
/// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
/// let matches: Vec<usize> = searcher
///     .find_iter("foobar")
///     .map(|mat| mat.pattern())
///     .collect();
/// assert_eq!(vec![0], matches);
/// # Some(()) }
/// # if cfg!(target_arch = "x86_64") {
/// #     example().unwrap()
/// # } else {
/// #     assert!(example().is_none());
/// # }
/// ```
#[derive(Clone, Debug)]
pub struct Searcher {
    config: Config,
    patterns: Patterns,
    rabinkarp: RabinKarp,
    search_kind: SearchKind,
    minimum_len: usize,
}

#[derive(Clone, Debug)]
enum SearchKind {
    Teddy(Teddy),
    RabinKarp,
}

impl Searcher {
    /// A convenience function for constructing a searcher from an iterator
    /// of things that can be converted to a `&[u8]`.
    ///
    /// If a searcher could not be constructed (either because of an
    /// unsupported CPU or because there are too many patterns), then `None`
    /// is returned.
    ///
    /// # Example
    ///
    /// Basic usage:
    ///
    /// ```
    /// use aho_corasick::packed::{MatchKind, Searcher};
    ///
    /// # fn example() -> Option<()> {
    /// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
    /// let matches: Vec<usize> = searcher
    ///     .find_iter("foobar")
    ///     .map(|mat| mat.pattern())
    ///     .collect();
    /// assert_eq!(vec![0], matches);
    /// # Some(()) }
    /// # if cfg!(target_arch = "x86_64") {
    /// #     example().unwrap()
    /// # } else {
    /// #     assert!(example().is_none());
    /// # }
    /// ```
    pub fn new<I, P>(patterns: I) -> Option<Searcher>
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        Builder::new().extend(patterns).build()
    }

    /// Return the first occurrence of any of the patterns in this searcher,
    /// according to its match semantics, in the given haystack. The `Match`
    /// returned will include the identifier of the pattern that matched, which
    /// corresponds to the index of the pattern (starting from `0`) in which it
    /// was added.
    ///
    /// # Example
    ///
    /// Basic usage:
    ///
    /// ```
    /// use aho_corasick::packed::{MatchKind, Searcher};
    ///
    /// # fn example() -> Option<()> {
    /// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
    /// let mat = searcher.find("foobar")?;
    /// assert_eq!(0, mat.pattern());
    /// assert_eq!(0, mat.start());
    /// assert_eq!(6, mat.end());
    /// # Some(()) }
    /// # if cfg!(target_arch = "x86_64") {
    /// #     example().unwrap()
    /// # } else {
    /// #     assert!(example().is_none());
    /// # }
    /// ```
    pub fn find<B: AsRef<[u8]>>(&self, haystack: B) -> Option<Match> {
        self.find_at(haystack, 0)
    }

    /// Return the first occurrence of any of the patterns in this searcher,
    /// according to its match semantics, in the given haystack starting from
    /// the given position.
    ///
    /// The `Match` returned will include the identifier of the pattern that
    /// matched, which corresponds to the index of the pattern (starting from
    /// `0`) in which it was added. The offsets in the `Match` will be relative
    /// to the start of `haystack` (and not `at`).
    ///
    /// # Example
    ///
    /// Basic usage:
    ///
    /// ```
    /// use aho_corasick::packed::{MatchKind, Searcher};
    ///
    /// # fn example() -> Option<()> {
    /// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
    /// let mat = searcher.find_at("foofoobar", 3)?;
    /// assert_eq!(0, mat.pattern());
    /// assert_eq!(3, mat.start());
    /// assert_eq!(9, mat.end());
    /// # Some(()) }
    /// # if cfg!(target_arch = "x86_64") {
    /// #     example().unwrap()
    /// # } else {
    /// #     assert!(example().is_none());
    /// # }
    /// ```
    pub fn find_at<B: AsRef<[u8]>>(
        &self,
        haystack: B,
        at: usize,
    ) -> Option<Match> {
        let haystack = haystack.as_ref();
        match self.search_kind {
            SearchKind::Teddy(ref teddy) => {
                if haystack[at..].len() < teddy.minimum_len() {
                    return self.slow_at(haystack, at);
                }
                teddy.find_at(&self.patterns, haystack, at)
            }
            SearchKind::RabinKarp => {
                self.rabinkarp.find_at(&self.patterns, haystack, at)
            }
        }
    }

    /// Return an iterator of non-overlapping occurrences of the patterns in
    /// this searcher, according to its match semantics, in the given haystack.
    ///
    /// # Example
    ///
    /// Basic usage:
    ///
    /// ```
    /// use aho_corasick::packed::{MatchKind, Searcher};
    ///
    /// # fn example() -> Option<()> {
    /// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
    /// let matches: Vec<usize> = searcher
    ///     .find_iter("foobar fooba foofoo")
    ///     .map(|mat| mat.pattern())
    ///     .collect();
    /// assert_eq!(vec![0, 1, 1, 1], matches);
    /// # Some(()) }
    /// # if cfg!(target_arch = "x86_64") {
    /// #     example().unwrap()
    /// # } else {
    /// #     assert!(example().is_none());
    /// # }
    /// ```
    pub fn find_iter<'a, 'b, B: ?Sized + AsRef<[u8]>>(
        &'a self,
        haystack: &'b B,
    ) -> FindIter<'a, 'b> {
        FindIter { searcher: self, haystack: haystack.as_ref(), at: 0 }
    }

    /// Returns the match kind used by this packed searcher.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use aho_corasick::packed::{MatchKind, Searcher};
    ///
    /// # fn example() -> Option<()> {
    /// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
    /// // leftmost-first is the default.
    /// assert_eq!(&MatchKind::LeftmostFirst, searcher.match_kind());
    /// # Some(()) }
    /// # if cfg!(target_arch = "x86_64") {
    /// #     example().unwrap()
    /// # } else {
    /// #     assert!(example().is_none());
    /// # }
    /// ```
    pub fn match_kind(&self) -> &MatchKind {
        self.patterns.match_kind()
    }

    /// Returns the minimum length of a haystack that is required in order for
    /// packed searching to be effective.
    ///
    /// In some cases, the underlying packed searcher may not be able to search
    /// very short haystacks. When that occurs, the implementation will defer
    /// to a slower non-packed searcher (which is still generally faster than
    /// Aho-Corasick for a small number of patterns). However, callers may
    /// want to avoid ever using the slower variant, which one can do by
    /// never passing a haystack shorter than the minimum length returned by
    /// this method.
    pub fn minimum_len(&self) -> usize {
        self.minimum_len
    }

    /// Returns the approximate total amount of heap used by this searcher, in
    /// units of bytes.
    pub fn heap_bytes(&self) -> usize {
        self.patterns.heap_bytes()
            + self.rabinkarp.heap_bytes()
            + self.search_kind.heap_bytes()
    }

    /// Use a slow (non-packed) searcher.
    ///
    /// This is useful when a packed searcher could be constructed, but could
    /// not be used to search a specific haystack. For example, if Teddy was
    /// built but the haystack is smaller than ~34 bytes, then Teddy might not
    /// be able to run.
    fn slow_at(&self, haystack: &[u8], at: usize) -> Option<Match> {
        self.rabinkarp.find_at(&self.patterns, haystack, at)
    }
}

impl SearchKind {
    fn heap_bytes(&self) -> usize {
        match *self {
            SearchKind::Teddy(ref ted) => ted.heap_bytes(),
            SearchKind::RabinKarp => 0,
        }
    }
}

/// An iterator over non-overlapping matches from a packed searcher.
///
/// The lifetime `'s` refers to the lifetime of the underlying
/// [`Searcher`](struct.Searcher.html), while the lifetime `'h` refers to the
/// lifetime of the haystack being searched.
#[derive(Debug)]
pub struct FindIter<'s, 'h> {
    searcher: &'s Searcher,
    haystack: &'h [u8],
    at: usize,
}

impl<'s, 'h> Iterator for FindIter<'s, 'h> {
    type Item = Match;

    fn next(&mut self) -> Option<Match> {
        if self.at > self.haystack.len() {
            return None;
        }
        match self.searcher.find_at(&self.haystack, self.at) {
            None => None,
            Some(c) => {
                self.at = c.end;
                Some(c)
            }
        }
    }
}