1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
use std::io;
use std::io::Write;

use crate::bitstream::LsbWriter;
use crate::deflate_state::DeflateState;
use crate::encoder_state::EncoderState;
use crate::huffman_lengths::{gen_huffman_lengths, write_huffman_lengths, BlockType};
use crate::lz77::{lz77_compress_block, LZ77Status};
use crate::lzvalue::LZValue;
use crate::stored_block::{compress_block_stored, write_stored_header, MAX_STORED_BLOCK_LENGTH};

const LARGEST_OUTPUT_BUF_SIZE: usize = 1024 * 32;

/// Flush mode to use when compressing input received in multiple steps.
///
/// (The more obscure ZLIB flush modes are not implemented.)
#[derive(Eq, PartialEq, Debug, Copy, Clone)]
pub enum Flush {
    // Simply wait for more input when we are out of input data to process.
    None,
    // Send a "sync block", corresponding to Z_SYNC_FLUSH in zlib. This finishes compressing and
    // outputting all pending data, and then outputs an empty stored block.
    // (That is, the block header indicating a stored block followed by `0000FFFF`).
    Sync,
    _Partial,
    _Block,
    _Full,
    // Finish compressing and output all remaining input.
    Finish,
}

/// Write all the lz77 encoded data in the buffer using the specified `EncoderState`, and finish
/// with the end of block code.
pub fn flush_to_bitstream(buffer: &[LZValue], state: &mut EncoderState) {
    for &b in buffer {
        state.write_lzvalue(b.value());
    }
    state.write_end_of_block()
}

/// Compress the input data using only fixed huffman codes.
///
/// Currently only used in tests.
#[cfg(test)]
pub fn compress_data_fixed(input: &[u8]) -> Vec<u8> {
    use crate::lz77::lz77_compress;

    let mut state = EncoderState::fixed(Vec::new());
    let compressed = lz77_compress(input).unwrap();

    // We currently don't split blocks here(this function is just used for tests anyhow)
    state.write_start_of_block(true, true);
    flush_to_bitstream(&compressed, &mut state);

    state.flush();
    state.reset(Vec::new())
}

fn write_stored_block(input: &[u8], mut writer: &mut LsbWriter, final_block: bool) {
    // If the input is not zero, we write stored blocks for the input data.
    if !input.is_empty() {
        let mut i = input.chunks(MAX_STORED_BLOCK_LENGTH).peekable();

        while let Some(chunk) = i.next() {
            let last_chunk = i.peek().is_none();
            // Write the block header
            write_stored_header(writer, final_block && last_chunk);

            // Write the actual data.
            compress_block_stored(chunk, &mut writer).expect("Write error");
        }
    } else {
        // If the input length is zero, we output an empty block. This is used for syncing.
        write_stored_header(writer, final_block);
        compress_block_stored(&[], &mut writer).expect("Write error");
    }
}

/// Inner compression function used by both the writers and the simple compression functions.
pub fn compress_data_dynamic_n<W: Write>(
    input: &[u8],
    deflate_state: &mut DeflateState<W>,
    flush: Flush,
) -> io::Result<usize> {
    let mut bytes_written = 0;

    let mut slice = input;

    // enter the decompression loop unless we did a sync flush, in case we want to make sure
    // everything is output before continuing.
    while deflate_state.needs_flush != true {
        let output_buf_len = deflate_state.output_buf().len();
        let output_buf_pos = deflate_state.output_buf_pos;
        // If the output buffer has too much data in it already, flush it before doing anything
        // else.
        if output_buf_len > LARGEST_OUTPUT_BUF_SIZE {
            let written = deflate_state
                .inner
                .as_mut()
                .expect("Missing writer!")
                .write(&deflate_state.encoder_state.inner_vec()[output_buf_pos..])?;

            if written < output_buf_len.checked_sub(output_buf_pos).unwrap() {
                // Only some of the data was flushed, so keep track of where we were.
                deflate_state.output_buf_pos += written;
            } else {
                // If we flushed all of the output, reset the output buffer.
                deflate_state.needs_flush = false;
                deflate_state.output_buf_pos = 0;
                deflate_state.output_buf().clear();
            }

            if bytes_written == 0 {
                // If the buffer was already full when the function was called, this has to be
                // returned rather than Ok(0) to indicate that we didn't write anything, but are
                // not done yet.
                return Err(io::Error::new(
                    io::ErrorKind::Interrupted,
                    "Internal buffer full.",
                ));
            } else {
                return Ok(bytes_written);
            }
        }

        if deflate_state.lz77_state.is_last_block() {
            // The last block has already been written, so we don't have anything to compress.
            break;
        }

        let (written, status, position) = lz77_compress_block(
            slice,
            &mut deflate_state.lz77_state,
            &mut deflate_state.input_buffer,
            &mut deflate_state.lz77_writer,
            flush,
        );

        // Bytes written in this call
        bytes_written += written;
        // Total bytes written since the compression process started
        // TODO: Should we realistically have to worry about overflowing here?
        deflate_state.bytes_written += written as u64;

        if status == LZ77Status::NeedInput {
            // If we've consumed all the data input so far, and we're not
            // finishing or syncing or ending the block here, simply return
            // the number of bytes consumed so far.
            return Ok(bytes_written);
        }

        // Increment start of input data
        slice = &slice[written..];

        // We need to check if this is the last block as the header will then be
        // slightly different to indicate this.
        let last_block = deflate_state.lz77_state.is_last_block();

        let current_block_input_bytes = deflate_state.lz77_state.current_block_input_bytes();

        if cfg!(debug_assertions) {
            deflate_state
                .bytes_written_control
                .add(current_block_input_bytes);
        }

        let partial_bits = deflate_state.encoder_state.writer.pending_bits();

        let res = {
            let (l_freqs, d_freqs) = deflate_state.lz77_writer.get_frequencies();
            let (l_lengths, d_lengths) =
                deflate_state.encoder_state.huffman_table.get_lengths_mut();

            gen_huffman_lengths(
                l_freqs,
                d_freqs,
                current_block_input_bytes,
                partial_bits,
                l_lengths,
                d_lengths,
                &mut deflate_state.length_buffers,
            )
        };

        // Check if we've actually managed to compress the input, and output stored blocks
        // if not.
        match res {
            BlockType::Dynamic(header) => {
                // Write the block header.
                deflate_state
                    .encoder_state
                    .write_start_of_block(false, last_block);

                // Output the lengths of the huffman codes used in this block.
                write_huffman_lengths(
                    &header,
                    &deflate_state.encoder_state.huffman_table,
                    &deflate_state.length_buffers.length_buf,
                    &mut deflate_state.encoder_state.writer,
                );

                // Uupdate the huffman codes that will be used to encode the
                // lz77-compressed data.
                deflate_state
                    .encoder_state
                    .huffman_table
                    .update_from_lengths();

                // Write the huffman compressed data and the end of block marker.
                flush_to_bitstream(
                    deflate_state.lz77_writer.get_buffer(),
                    &mut deflate_state.encoder_state,
                );
            }
            BlockType::Fixed => {
                // Write the block header for fixed code blocks.
                deflate_state
                    .encoder_state
                    .write_start_of_block(true, last_block);

                // Use the pre-defined static huffman codes.
                deflate_state.encoder_state.set_huffman_to_fixed();

                // Write the compressed data and the end of block marker.
                flush_to_bitstream(
                    deflate_state.lz77_writer.get_buffer(),
                    &mut deflate_state.encoder_state,
                );
            }
            BlockType::Stored => {
                // If compression fails, output a stored block instead.

                let start_pos = position.saturating_sub(current_block_input_bytes as usize);

                assert!(
                    position >= current_block_input_bytes as usize,
                    "Error! Trying to output a stored block with forgotten data!\
                     if you encounter this error, please file an issue!"
                );

                write_stored_block(
                    &deflate_state.input_buffer.get_buffer()[start_pos..position],
                    &mut deflate_state.encoder_state.writer,
                    flush == Flush::Finish && last_block,
                );
            }
        };

        // Clear the current lz77 data in the writer for the next call.
        deflate_state.lz77_writer.clear();
        // We are done with the block, so we reset the number of bytes taken
        // for the next one.
        deflate_state.lz77_state.reset_input_bytes();

        // We are done for now.
        if status == LZ77Status::Finished {
            // This flush mode means that there should be an empty stored block at the end.
            if flush == Flush::Sync {
                write_stored_block(&[], &mut deflate_state.encoder_state.writer, false);
                // Indicate that we need to flush the buffers before doing anything else.
                deflate_state.needs_flush = true;
            } else if !deflate_state.lz77_state.is_last_block() {
                // Make sure a block with the last block header has been output.
                // Not sure this can actually happen, but we make sure to finish properly
                // if it somehow does.
                // An empty fixed block is the shortest.
                let es = &mut deflate_state.encoder_state;
                es.set_huffman_to_fixed();
                es.write_start_of_block(true, true);
                es.write_end_of_block();
            }
            break;
        }
    }

    // If we reach this point, the remaining data in the buffers is to be flushed.
    deflate_state.encoder_state.flush();
    // Make sure we've output everything, and return the number of bytes written if everything
    // went well.
    let output_buf_pos = deflate_state.output_buf_pos;
    let written_to_writer = deflate_state
        .inner
        .as_mut()
        .expect("Missing writer!")
        .write(&deflate_state.encoder_state.inner_vec()[output_buf_pos..])?;
    if written_to_writer
        < deflate_state
            .output_buf()
            .len()
            .checked_sub(output_buf_pos)
            .unwrap()
    {
        deflate_state.output_buf_pos += written_to_writer;
    } else {
        // If we sucessfully wrote all the data, we can clear the output buffer.
        deflate_state.output_buf_pos = 0;
        deflate_state.output_buf().clear();
        deflate_state.needs_flush = false;
    }

    Ok(bytes_written)
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::test_utils::{decompress_to_end, get_test_data};

    #[test]
    /// Test compressing a short string using fixed encoding.
    fn fixed_string_mem() {
        let test_data = String::from("                    GNU GENERAL PUBLIC LICENSE").into_bytes();
        let compressed = compress_data_fixed(&test_data);

        let result = decompress_to_end(&compressed);

        assert_eq!(test_data, result);
    }

    #[test]
    fn fixed_data() {
        let data = vec![190u8; 400];
        let compressed = compress_data_fixed(&data);
        let result = decompress_to_end(&compressed);

        assert_eq!(data, result);
    }

    /// Test deflate example.
    ///
    /// Check if the encoder produces the same code as the example given by Mark Adler here:
    /// https://stackoverflow.com/questions/17398931/deflate-encoding-with-static-huffman-codes/17415203
    #[test]
    fn fixed_example() {
        let test_data = b"Deflate late";
        // let check =
        // [0x73, 0x49, 0x4d, 0xcb, 0x49, 0x2c, 0x49, 0x55, 0xc8, 0x49, 0x2c, 0x49, 0x5, 0x0];
        let check = [
            0x73, 0x49, 0x4d, 0xcb, 0x49, 0x2c, 0x49, 0x55, 0x00, 0x11, 0x00,
        ];
        let compressed = compress_data_fixed(test_data);
        assert_eq!(&compressed, &check);
        let decompressed = decompress_to_end(&compressed);
        assert_eq!(&decompressed, test_data)
    }

    #[test]
    /// Test compression from a file.
    fn fixed_string_file() {
        let input = get_test_data();

        let compressed = compress_data_fixed(&input);
        println!("Fixed codes compressed len: {}", compressed.len());
        let result = decompress_to_end(&compressed);

        assert_eq!(input.len(), result.len());
        // Not using assert_eq here deliberately to avoid massive amounts of output spam.
        assert!(input == result);
    }
}