1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
//! Find a topological order in a directed graph if one exists.

use std::collections::{HashMap, HashSet, VecDeque};
use std::hash::Hash;
use std::mem;

/// Find a topological order in a directed graph if one exists.
///
/// - `roots` is a collection of nodes that ought to be explored.
/// - `successors` returns a list of successors for a given node, including possibly
///    nodes that were not present in `roots`.
///
/// The function returns either `Ok` with an acceptable topological order of nodes
/// given as roots or discovered, or `Err` with a node belonging to a cycle. In the
/// latter case, the strongly connected set can then be found using the
/// [`strongly_connected_component`](super::strongly_connected_components::strongly_connected_component)
/// function, or if only one of the loops is needed the [`bfs_loop`][super::bfs::bfs_loop] function
/// can be used instead to identify one of the shortest loops involving this node.
///
/// # Examples
///
/// We will sort integers from 1 to 9, each integer having its two immediate
/// greater numbers as successors, starting with two roots 5 and 1:
///
/// ```
/// use pathfinding::prelude::topological_sort;
///
/// fn successors(node: &usize) -> Vec<usize> {
///   match *node {
///     n if n <= 7 => vec![n+1, n+2],
///     8 => vec![9],
///     _ => vec![],
///   }
/// }
///
/// let sorted = topological_sort(&[5, 1], successors);
/// assert_eq!(sorted, Ok(vec![1, 2, 3, 4, 5, 6, 7, 8, 9]));
/// ```
///
/// If, however, there is a loop in the graph (for example, all nodes but 7
/// have also 7 has a successor), one of the nodes in the loop will be returned as
/// an error:
///
/// ```
/// use pathfinding::prelude::*;
///
/// fn successors(node: &usize) -> Vec<usize> {
///   match *node {
///     n if n <= 6 => vec![n+1, n+2, 7],
///     7 => vec![8, 9],
///     8 => vec![7, 9],
///     _ => vec![7],
///   }
/// }
///
/// let sorted = topological_sort(&[5, 1], successors);
/// assert!(sorted.is_err());
///
/// // Let's assume that the returned node is 8 (it can be any node which is part
/// // of a loop). We can lookup up one of the shortest loops containing 8
/// // (8 -> 7 -> 8 is the unique loop with two hops containing 8):
///
/// assert_eq!(bfs_loop(&8, successors), Some(vec![8, 7, 8]));
///
/// // We can also request the whole strongly connected set containing 8. Here
/// // 7, 8, and 9 are all reachable from one another.
///
/// let mut set = strongly_connected_component(&8, successors);
/// set.sort();
/// assert_eq!(set, vec![7, 8, 9]);
/// ```
pub fn topological_sort<N, FN, IN>(roots: &[N], mut successors: FN) -> Result<Vec<N>, N>
where
    N: Eq + Hash + Clone,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = N>,
{
    let mut marked = HashSet::with_capacity(roots.len());
    let mut temp = HashSet::new();
    let mut sorted = VecDeque::with_capacity(roots.len());
    let mut roots: HashSet<N> = roots.iter().cloned().collect::<HashSet<_>>();
    while let Some(node) = roots.iter().cloned().next() {
        temp.clear();
        visit(
            &node,
            &mut successors,
            &mut roots,
            &mut marked,
            &mut temp,
            &mut sorted,
        )?;
    }
    Ok(sorted.into_iter().collect())
}

fn visit<N, FN, IN>(
    node: &N,
    successors: &mut FN,
    unmarked: &mut HashSet<N>,
    marked: &mut HashSet<N>,
    temp: &mut HashSet<N>,
    sorted: &mut VecDeque<N>,
) -> Result<(), N>
where
    N: Eq + Hash + Clone,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = N>,
{
    unmarked.remove(node);
    if marked.contains(node) {
        return Ok(());
    }
    if temp.contains(node) {
        return Err(node.clone());
    }
    temp.insert(node.clone());
    for n in successors(node) {
        visit(&n, successors, unmarked, marked, temp, sorted)?;
    }
    marked.insert(node.clone());
    sorted.push_front(node.clone());
    Ok(())
}

/// Topologically sort a directed graph into groups of independent nodes.
///
/// - `nodes` is a collection of nodes.
/// - `successors` returns a list of successors for a given node.
///
/// This function works like [`topological_sort`](self::topological_sort), but
/// rather than producing a single ordering of nodes, this function partitions
/// the nodes into groups: the first group contains all nodes with no
/// dependencies, the second group contains all nodes whose only dependencies
/// are in the first group, and so on. Concatenating the groups produces a
/// valid topological sort regardless of how the nodes within each group are
/// reordered. No guarantees are made about the order of nodes within each
/// group. Also, the list of `nodes` must be exhaustive, new nodes must not be
/// returned by the `successors` function.
///
/// The function returns either `Ok` with a valid list of groups, or `Err` with
/// a (groups, remaining) tuple containing a (possibly empty) partial list of
/// groups, and a list of remaining nodes that could not be grouped due to
/// cycles. In the error case, the strongly connected set(s) can then be found
/// using the
/// [`strongly_connected_components`](super::strongly_connected_components::strongly_connected_components)
/// function on the list of remaining nodes.
///
/// The current implementation uses a variation of [Kahn's
/// algorithm](https://en.wikipedia.org/wiki/Topological_sorting#Kahn's_algorithm),
/// and runs in O(|V| + |E|) time.
#[allow(clippy::type_complexity)]
pub fn topological_sort_into_groups<N, FN, IN>(
    nodes: &[N],
    mut successors: FN,
) -> Result<Vec<Vec<N>>, (Vec<Vec<N>>, Vec<N>)>
where
    N: Eq + Hash + Clone,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = N>,
{
    if nodes.is_empty() {
        return Ok(Vec::new());
    }
    let mut succs_map = HashMap::<N, HashSet<N>>::with_capacity(nodes.len());
    let mut preds_map = HashMap::<N, usize>::with_capacity(nodes.len());
    for node in nodes.iter() {
        succs_map.insert(node.clone(), successors(node).into_iter().collect());
        preds_map.insert(node.clone(), 0);
    }
    for succs in succs_map.values() {
        for succ in succs.iter() {
            *preds_map.get_mut(succ).unwrap() += 1;
        }
    }
    let mut groups = Vec::<Vec<N>>::new();
    let mut prev_group: Vec<N> = preds_map
        .iter()
        .filter_map(|(node, &num_preds)| {
            if num_preds == 0 {
                Some(node.clone())
            } else {
                None
            }
        })
        .collect();
    if prev_group.is_empty() {
        let remaining: Vec<N> = preds_map.into_iter().map(|(node, _)| node).collect();
        return Err((Vec::new(), remaining));
    }
    for node in &prev_group {
        preds_map.remove(node);
    }
    while !preds_map.is_empty() {
        let mut next_group = Vec::<N>::new();
        for node in &prev_group {
            for succ in &succs_map[node] {
                {
                    let num_preds = preds_map.get_mut(succ).unwrap();
                    *num_preds -= 1;
                    if *num_preds > 0 {
                        continue;
                    }
                }
                next_group.push(preds_map.remove_entry(succ).unwrap().0);
            }
        }
        groups.push(mem::replace(&mut prev_group, next_group));
        if prev_group.is_empty() {
            let remaining: Vec<N> = preds_map.into_iter().map(|(node, _)| node).collect();
            return Err((groups, remaining));
        }
    }
    groups.push(prev_group);
    Ok(groups)
}