1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
//! Find a topological order in a directed graph if one exists. use std::collections::{HashMap, HashSet, VecDeque}; use std::hash::Hash; use std::mem; /// Find a topological order in a directed graph if one exists. /// /// - `roots` is a collection of nodes that ought to be explored. /// - `successors` returns a list of successors for a given node, including possibly /// nodes that were not present in `roots`. /// /// The function returns either `Ok` with an acceptable topological order of nodes /// given as roots or discovered, or `Err` with a node belonging to a cycle. In the /// latter case, the strongly connected set can then be found using the /// [`strongly_connected_component`](super::strongly_connected_components::strongly_connected_component) /// function, or if only one of the loops is needed the [`bfs_loop`][super::bfs::bfs_loop] function /// can be used instead to identify one of the shortest loops involving this node. /// /// # Examples /// /// We will sort integers from 1 to 9, each integer having its two immediate /// greater numbers as successors, starting with two roots 5 and 1: /// /// ``` /// use pathfinding::prelude::topological_sort; /// /// fn successors(node: &usize) -> Vec<usize> { /// match *node { /// n if n <= 7 => vec![n+1, n+2], /// 8 => vec![9], /// _ => vec![], /// } /// } /// /// let sorted = topological_sort(&[5, 1], successors); /// assert_eq!(sorted, Ok(vec![1, 2, 3, 4, 5, 6, 7, 8, 9])); /// ``` /// /// If, however, there is a loop in the graph (for example, all nodes but 7 /// have also 7 has a successor), one of the nodes in the loop will be returned as /// an error: /// /// ``` /// use pathfinding::prelude::*; /// /// fn successors(node: &usize) -> Vec<usize> { /// match *node { /// n if n <= 6 => vec![n+1, n+2, 7], /// 7 => vec![8, 9], /// 8 => vec![7, 9], /// _ => vec![7], /// } /// } /// /// let sorted = topological_sort(&[5, 1], successors); /// assert!(sorted.is_err()); /// /// // Let's assume that the returned node is 8 (it can be any node which is part /// // of a loop). We can lookup up one of the shortest loops containing 8 /// // (8 -> 7 -> 8 is the unique loop with two hops containing 8): /// /// assert_eq!(bfs_loop(&8, successors), Some(vec![8, 7, 8])); /// /// // We can also request the whole strongly connected set containing 8. Here /// // 7, 8, and 9 are all reachable from one another. /// /// let mut set = strongly_connected_component(&8, successors); /// set.sort(); /// assert_eq!(set, vec![7, 8, 9]); /// ``` pub fn topological_sort<N, FN, IN>(roots: &[N], mut successors: FN) -> Result<Vec<N>, N> where N: Eq + Hash + Clone, FN: FnMut(&N) -> IN, IN: IntoIterator<Item = N>, { let mut marked = HashSet::with_capacity(roots.len()); let mut temp = HashSet::new(); let mut sorted = VecDeque::with_capacity(roots.len()); let mut roots: HashSet<N> = roots.iter().cloned().collect::<HashSet<_>>(); while let Some(node) = roots.iter().cloned().next() { temp.clear(); visit( &node, &mut successors, &mut roots, &mut marked, &mut temp, &mut sorted, )?; } Ok(sorted.into_iter().collect()) } fn visit<N, FN, IN>( node: &N, successors: &mut FN, unmarked: &mut HashSet<N>, marked: &mut HashSet<N>, temp: &mut HashSet<N>, sorted: &mut VecDeque<N>, ) -> Result<(), N> where N: Eq + Hash + Clone, FN: FnMut(&N) -> IN, IN: IntoIterator<Item = N>, { unmarked.remove(node); if marked.contains(node) { return Ok(()); } if temp.contains(node) { return Err(node.clone()); } temp.insert(node.clone()); for n in successors(node) { visit(&n, successors, unmarked, marked, temp, sorted)?; } marked.insert(node.clone()); sorted.push_front(node.clone()); Ok(()) } /// Topologically sort a directed graph into groups of independent nodes. /// /// - `nodes` is a collection of nodes. /// - `successors` returns a list of successors for a given node. /// /// This function works like [`topological_sort`](self::topological_sort), but /// rather than producing a single ordering of nodes, this function partitions /// the nodes into groups: the first group contains all nodes with no /// dependencies, the second group contains all nodes whose only dependencies /// are in the first group, and so on. Concatenating the groups produces a /// valid topological sort regardless of how the nodes within each group are /// reordered. No guarantees are made about the order of nodes within each /// group. Also, the list of `nodes` must be exhaustive, new nodes must not be /// returned by the `successors` function. /// /// The function returns either `Ok` with a valid list of groups, or `Err` with /// a (groups, remaining) tuple containing a (possibly empty) partial list of /// groups, and a list of remaining nodes that could not be grouped due to /// cycles. In the error case, the strongly connected set(s) can then be found /// using the /// [`strongly_connected_components`](super::strongly_connected_components::strongly_connected_components) /// function on the list of remaining nodes. /// /// The current implementation uses a variation of [Kahn's /// algorithm](https://en.wikipedia.org/wiki/Topological_sorting#Kahn's_algorithm), /// and runs in O(|V| + |E|) time. #[allow(clippy::type_complexity)] pub fn topological_sort_into_groups<N, FN, IN>( nodes: &[N], mut successors: FN, ) -> Result<Vec<Vec<N>>, (Vec<Vec<N>>, Vec<N>)> where N: Eq + Hash + Clone, FN: FnMut(&N) -> IN, IN: IntoIterator<Item = N>, { if nodes.is_empty() { return Ok(Vec::new()); } let mut succs_map = HashMap::<N, HashSet<N>>::with_capacity(nodes.len()); let mut preds_map = HashMap::<N, usize>::with_capacity(nodes.len()); for node in nodes.iter() { succs_map.insert(node.clone(), successors(node).into_iter().collect()); preds_map.insert(node.clone(), 0); } for succs in succs_map.values() { for succ in succs.iter() { *preds_map.get_mut(succ).unwrap() += 1; } } let mut groups = Vec::<Vec<N>>::new(); let mut prev_group: Vec<N> = preds_map .iter() .filter_map(|(node, &num_preds)| { if num_preds == 0 { Some(node.clone()) } else { None } }) .collect(); if prev_group.is_empty() { let remaining: Vec<N> = preds_map.into_iter().map(|(node, _)| node).collect(); return Err((Vec::new(), remaining)); } for node in &prev_group { preds_map.remove(node); } while !preds_map.is_empty() { let mut next_group = Vec::<N>::new(); for node in &prev_group { for succ in &succs_map[node] { { let num_preds = preds_map.get_mut(succ).unwrap(); *num_preds -= 1; if *num_preds > 0 { continue; } } next_group.push(preds_map.remove_entry(succ).unwrap().0); } } groups.push(mem::replace(&mut prev_group, next_group)); if prev_group.is_empty() { let remaining: Vec<N> = preds_map.into_iter().map(|(node, _)| node).collect(); return Err((groups, remaining)); } } groups.push(prev_group); Ok(groups) }