1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
//! Compute a shortest path (or all shorted paths) using the [A* search
//! algorithm](https://en.wikipedia.org/wiki/A*_search_algorithm).

use indexmap::map::Entry::{Occupied, Vacant};
use indexmap::IndexMap;
use num_traits::Zero;
use std::cmp::Ordering;
use std::collections::{BinaryHeap, HashSet};
use std::hash::Hash;
use std::usize;

use super::reverse_path;

/// Compute a shortest path using the [A* search
/// algorithm](https://en.wikipedia.org/wiki/A*_search_algorithm).
///
/// The shortest path starting from `start` up to a node for which `success` returns `true` is
/// computed and returned along with its total cost, in a `Some`. If no path can be found, `None`
/// is returned instead.
///
/// - `start` is the starting node.
/// - `successors` returns a list of successors for a given node, along with the cost for moving
/// from the node to the successor.
/// - `heuristic` returns an approximation of the cost from a given node to the goal. The
/// approximation must not be greater than the real cost, or a wrong shortest path may be returned.
/// - `success` checks whether the goal has been reached. It is not a node as some problems require
/// a dynamic solution instead of a fixed node.
///
/// A node will never be included twice in the path as determined by the `Eq` relationship.
///
/// The returned path comprises both the start and end node.
///
/// # Example
///
/// We will search the shortest path on a chess board to go from (1, 1) to (4, 6) doing only knight
/// moves.
///
/// The first version uses an explicit type `Pos` on which the required traits are derived.
///
/// ```
/// use pathfinding::prelude::{absdiff, astar};
///
/// #[derive(Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
/// struct Pos(i32, i32);
///
/// impl Pos {
///   fn distance(&self, other: &Pos) -> u32 {
///     (absdiff(self.0, other.0) + absdiff(self.1, other.1)) as u32
///   }
///
///   fn successors(&self) -> Vec<(Pos, u32)> {
///     let &Pos(x, y) = self;
///     vec![Pos(x+1,y+2), Pos(x+1,y-2), Pos(x-1,y+2), Pos(x-1,y-2),
///          Pos(x+2,y+1), Pos(x+2,y-1), Pos(x-2,y+1), Pos(x-2,y-1)]
///          .into_iter().map(|p| (p, 1)).collect()
///   }
/// }
///
/// static GOAL: Pos = Pos(4, 6);
/// let result = astar(&Pos(1, 1), |p| p.successors(), |p| p.distance(&GOAL) / 3,
///                    |p| *p == GOAL);
/// assert_eq!(result.expect("no path found").1, 4);
/// ```
///
/// The second version does not declare a `Pos` type, makes use of more closures,
/// and is thus shorter.
///
/// ```
/// use pathfinding::prelude::{absdiff, astar};
///
/// static GOAL: (i32, i32) = (4, 6);
/// let result = astar(&(1, 1),
///                    |&(x, y)| vec![(x+1,y+2), (x+1,y-2), (x-1,y+2), (x-1,y-2),
///                                   (x+2,y+1), (x+2,y-1), (x-2,y+1), (x-2,y-1)]
///                               .into_iter().map(|p| (p, 1)),
///                    |&(x, y)| absdiff(x, GOAL.0) + absdiff(y, GOAL.1),
///                    |&p| p == GOAL);
/// assert_eq!(result.expect("no path found").1, 4);
/// ```
pub fn astar<N, C, FN, IN, FH, FS>(
    start: &N,
    mut successors: FN,
    mut heuristic: FH,
    mut success: FS,
) -> Option<(Vec<N>, C)>
where
    N: Eq + Hash + Clone,
    C: Zero + Ord + Copy,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = (N, C)>,
    FH: FnMut(&N) -> C,
    FS: FnMut(&N) -> bool,
{
    let mut to_see = BinaryHeap::new();
    to_see.push(SmallestCostHolder {
        estimated_cost: Zero::zero(),
        cost: Zero::zero(),
        index: 0,
    });
    let mut parents: IndexMap<N, (usize, C)> = IndexMap::new();
    parents.insert(start.clone(), (usize::max_value(), Zero::zero()));
    while let Some(SmallestCostHolder { cost, index, .. }) = to_see.pop() {
        let successors = {
            let (node, &(_, c)) = parents.get_index(index).unwrap();
            if success(node) {
                let path = reverse_path(&parents, |&(p, _)| p, index);
                return Some((path, cost));
            }
            // We may have inserted a node several time into the binary heap if we found
            // a better way to access it. Ensure that we are currently dealing with the
            // best path and discard the others.
            if cost > c {
                continue;
            }
            successors(node)
        };
        for (successor, move_cost) in successors {
            let new_cost = cost + move_cost;
            let h; // heuristic(&successor)
            let n; // index for successor
            match parents.entry(successor) {
                Vacant(e) => {
                    h = heuristic(e.key());
                    n = e.index();
                    e.insert((index, new_cost));
                }
                Occupied(mut e) => {
                    if e.get().1 > new_cost {
                        h = heuristic(e.key());
                        n = e.index();
                        e.insert((index, new_cost));
                    } else {
                        continue;
                    }
                }
            }

            to_see.push(SmallestCostHolder {
                estimated_cost: new_cost + h,
                cost: new_cost,
                index: n,
            });
        }
    }
    None
}

/// Compute all shortest paths using the [A* search
/// algorithm](https://en.wikipedia.org/wiki/A*_search_algorithm). Whereas `astar`
/// (non-deterministic-ally) returns a single shortest path, `astar_bag` returns all shortest paths
/// (in a non-deterministic order).
///
/// The shortest paths starting from `start` up to a node for which `success` returns `true` are
/// computed and returned in an iterator along with the cost (which, by definition, is the same for
/// each shortest path), wrapped in a `Some`. If no paths are found, `None` is returned.
///
/// - `start` is the starting node.
/// - `successors` returns a list of successors for a given node, along with the cost for moving
/// from the node to the successor.
/// - `heuristic` returns an approximation of the cost from a given node to the goal. The
/// approximation must not be greater than the real cost, or a wrong shortest path may be returned.
/// - `success` checks whether the goal has been reached. It is not a node as some problems require
/// a dynamic solution instead of a fixed node.
///
/// A node will never be included twice in the path as determined by the `Eq` relationship.
///
/// Each path comprises both the start and an end node. Note that while every path shares the same
/// start node, different paths may have different end nodes.
pub fn astar_bag<N, C, FN, IN, FH, FS>(
    start: &N,
    mut successors: FN,
    mut heuristic: FH,
    mut success: FS,
) -> Option<(AstarSolution<N>, C)>
where
    N: Eq + Hash + Clone,
    C: Zero + Ord + Copy,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = (N, C)>,
    FH: FnMut(&N) -> C,
    FS: FnMut(&N) -> bool,
{
    let mut to_see = BinaryHeap::new();
    let mut min_cost = None;
    let mut sinks = HashSet::new();
    to_see.push(SmallestCostHolder {
        estimated_cost: Zero::zero(),
        cost: Zero::zero(),
        index: 0,
    });
    let mut parents: IndexMap<N, (HashSet<usize>, C)> = IndexMap::new();
    parents.insert(start.clone(), (HashSet::new(), Zero::zero()));
    while let Some(SmallestCostHolder {
        cost,
        index,
        estimated_cost,
        ..
    }) = to_see.pop()
    {
        if let Some(min_cost) = min_cost {
            if estimated_cost > min_cost {
                break;
            }
        }
        let successors = {
            let (node, &(_, c)) = parents.get_index(index).unwrap();
            if success(node) {
                min_cost = Some(cost);
                sinks.insert(index);
            }
            // We may have inserted a node several time into the binary heap if we found
            // a better way to access it. Ensure that we are currently dealing with the
            // best path and discard the others.
            if cost > c {
                continue;
            }
            successors(node)
        };
        for (successor, move_cost) in successors {
            let new_cost = cost + move_cost;
            let h; // heuristic(&successor)
            let n; // index for successor
            match parents.entry(successor) {
                Vacant(e) => {
                    h = heuristic(e.key());
                    n = e.index();
                    let mut p = HashSet::new();
                    p.insert(index);
                    e.insert((p, new_cost));
                }
                Occupied(mut e) => {
                    if e.get().1 > new_cost {
                        h = heuristic(e.key());
                        n = e.index();
                        let s = e.get_mut();
                        s.0.clear();
                        s.0.insert(index);
                        s.1 = new_cost;
                    } else {
                        if e.get().1 == new_cost {
                            // New parent with an identical cost, this is not
                            // considered as an insertion.
                            e.get_mut().0.insert(index);
                        }
                        continue;
                    }
                }
            }

            to_see.push(SmallestCostHolder {
                estimated_cost: new_cost + h,
                cost: new_cost,
                index: n,
            });
        }
    }

    min_cost.map(|cost| {
        let parents = parents
            .into_iter()
            .map(|(k, (ps, _))| (k, ps.into_iter().collect()))
            .collect();
        (
            AstarSolution {
                sinks: sinks.into_iter().collect(),
                parents,
                current: vec![],
                terminated: false,
            },
            cost,
        )
    })
}

/// Compute all shortest paths using the [A* search
/// algorithm](https://en.wikipedia.org/wiki/A*_search_algorithm). Whereas `astar`
/// (non-deterministic-ally) returns a single shortest path, `astar_bag` returns all shortest paths
/// (in a non-deterministic order).
///
/// This is a utility function which collects the results of the `astar_bag` function into a
/// vector. Most of the time, it is more appropriate to use `astar_bag` directly.
///
/// ### Warning
///
/// The number of results with the same value might be very large in some graphs. Use with caution.
pub fn astar_bag_collect<N, C, FN, IN, FH, FS>(
    start: &N,
    successors: FN,
    heuristic: FH,
    success: FS,
) -> Option<(Vec<Vec<N>>, C)>
where
    N: Eq + Hash + Clone,
    C: Zero + Ord + Copy,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = (N, C)>,
    FH: FnMut(&N) -> C,
    FS: FnMut(&N) -> bool,
{
    astar_bag(start, successors, heuristic, success)
        .map(|(solutions, cost)| (solutions.collect(), cost))
}

struct SmallestCostHolder<K> {
    estimated_cost: K,
    cost: K,
    index: usize,
}

impl<K: PartialEq> PartialEq for SmallestCostHolder<K> {
    fn eq(&self, other: &Self) -> bool {
        self.estimated_cost.eq(&other.estimated_cost) && self.cost.eq(&other.cost)
    }
}

impl<K: PartialEq> Eq for SmallestCostHolder<K> {}

impl<K: Ord> PartialOrd for SmallestCostHolder<K> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<K: Ord> Ord for SmallestCostHolder<K> {
    fn cmp(&self, other: &Self) -> Ordering {
        match other.estimated_cost.cmp(&self.estimated_cost) {
            Ordering::Equal => self.cost.cmp(&other.cost),
            s => s,
        }
    }
}

/// Iterator structure created by the `astar_bag` function.
#[derive(Clone)]
pub struct AstarSolution<N> {
    sinks: Vec<usize>,
    parents: Vec<(N, Vec<usize>)>,
    current: Vec<Vec<usize>>,
    terminated: bool,
}

impl<N: Clone + Eq + Hash> AstarSolution<N> {
    fn complete(&mut self) {
        loop {
            let ps = match self.current.last() {
                None => self.sinks.clone(),
                Some(last) => {
                    let &top = last.last().unwrap();
                    self.parents(top).clone()
                }
            };
            if ps.is_empty() {
                break;
            }
            self.current.push(ps);
        }
    }

    fn next_vec(&mut self) {
        while self.current.last().map(Vec::len) == Some(1) {
            self.current.pop();
        }
        self.current.last_mut().map(Vec::pop);
    }

    fn node(&self, i: usize) -> &N {
        &self.parents[i].0
    }

    fn parents(&self, i: usize) -> &Vec<usize> {
        &self.parents[i].1
    }
}

impl<N: Clone + Eq + Hash> Iterator for AstarSolution<N> {
    type Item = Vec<N>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.terminated {
            return None;
        }
        self.complete();
        let path = self
            .current
            .iter()
            .rev()
            .map(|v| v.last().cloned().unwrap())
            .map(|i| self.node(i).clone())
            .collect::<Vec<_>>();
        self.next_vec();
        self.terminated = self.current.is_empty();
        Some(path)
    }
}