Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
//! Compute a shortest path using the [Dijkstra search
//! algorithm](https://en.wikipedia.org/wiki/Dijkstra's_algorithm).

use indexmap::map::Entry::{Occupied, Vacant};
use indexmap::IndexMap;
use num_traits::Zero;
use std::cmp::Ordering;
use std::collections::{BinaryHeap, HashMap};
use std::hash::Hash;
use std::usize;

use super::reverse_path;

/// Compute a shortest path using the [Dijkstra search
/// algorithm](https://en.wikipedia.org/wiki/Dijkstra's_algorithm).
///
/// The shortest path starting from `start` up to a node for which `success` returns `true` is
/// computed and returned along with its total cost, in a `Some`. If no path can be found, `None`
/// is returned instead.
///
/// - `start` is the starting node.
/// - `successors` returns a list of successors for a given node, along with the cost for moving
/// from the node to the successor.
/// - `success` checks whether the goal has been reached. It is not a node as some problems require
/// a dynamic solution instead of a fixed node.
///
/// A node will never be included twice in the path as determined by the `Eq` relationship.
///
/// The returned path comprises both the start and end node.
///
/// # Example
///
/// We will search the shortest path on a chess board to go from (1, 1) to (4, 6) doing only knight
/// moves.
///
/// The first version uses an explicit type `Pos` on which the required traits are derived.
///
/// ```
/// use pathfinding::prelude::dijkstra;
///
/// #[derive(Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
/// struct Pos(i32, i32);
///
/// impl Pos {
///   fn successors(&self) -> Vec<(Pos, usize)> {
///     let &Pos(x, y) = self;
///     vec![Pos(x+1,y+2), Pos(x+1,y-2), Pos(x-1,y+2), Pos(x-1,y-2),
///          Pos(x+2,y+1), Pos(x+2,y-1), Pos(x-2,y+1), Pos(x-2,y-1)]
///          .into_iter().map(|p| (p, 1)).collect()
///   }
/// }
///
/// static GOAL: Pos = Pos(4, 6);
/// let result = dijkstra(&Pos(1, 1), |p| p.successors(), |p| *p == GOAL);
/// assert_eq!(result.expect("no path found").1, 4);
/// ```
///
/// The second version does not declare a `Pos` type, makes use of more closures,
/// and is thus shorter.
///
/// ```
/// use pathfinding::prelude::dijkstra;
///
/// static GOAL: (i32, i32) = (4, 6);
/// let result = dijkstra(&(1, 1),
///                       |&(x, y)| vec![(x+1,y+2), (x+1,y-2), (x-1,y+2), (x-1,y-2),
///                                      (x+2,y+1), (x+2,y-1), (x-2,y+1), (x-2,y-1)]
///                                  .into_iter().map(|p| (p, 1)),
///                       |&p| p == GOAL);
/// assert_eq!(result.expect("no path found").1, 4);
/// ```
pub fn dijkstra<N, C, FN, IN, FS>(start: &N, successors: FN, success: FS) -> Option<(Vec<N>, C)>
where
    N: Eq + Hash + Clone,
    C: Zero + Ord + Copy,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = (N, C)>,
    FS: FnMut(&N) -> bool,
{
    let (parents, reached) = run_dijkstra(start, successors, success);
    reached.map(|target| {
        (
            reverse_path(&parents, |&(p, _)| p, target),
            parents.get_index(target).unwrap().1 .1,
        )
    })
}

/// Determine all reachable nodes from a starting point as well as the minimum cost to
/// reach them and a possible optimal parent node
/// using the [Dijkstra search algorithm](https://en.wikipedia.org/wiki/Dijkstra's_algorithm).
///
/// - `start` is the starting node.
/// - `successors` returns a list of successors for a given node, along with the cost for moving
/// from the node to the successor.
///
/// The result is a map where every reachable node (not including `start`) is associated with
/// an optimal parent node and a cost.
///
/// The [`build_path`] function can be used to build a full path from the starting point to one
/// of the reachable targets.
pub fn dijkstra_all<N, C, FN, IN>(start: &N, successors: FN) -> HashMap<N, (N, C)>
where
    N: Eq + Hash + Clone,
    C: Zero + Ord + Copy,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = (N, C)>,
{
    dijkstra_partial(start, successors, |_| false).0
}

/// Determine some reachable nodes from a starting point as well as the minimum cost to
/// reach them and a possible optimal parent node
/// using the [Dijkstra search algorithm](https://en.wikipedia.org/wiki/Dijkstra's_algorithm).
///
/// - `start` is the starting node.
/// - `successors` returns a list of successors for a given node, along with the cost for moving
/// from the node to the successor.
/// - `stop` is a function which is called every time a node is examined (including `start`).
///   A `true` return value will stop the algorithm.
///
/// The result is a map where every node examined before the algorithm stopped (not including
/// `start`) is associated with an optimal parent node and a cost, as well as the node which
/// caused the algorithm to stop if any.
///
/// The [`build_path`] function can be used to build a full path from the starting point to one
/// of the reachable targets.
pub fn dijkstra_partial<N, C, FN, IN, FS>(
    start: &N,
    successors: FN,
    stop: FS,
) -> (HashMap<N, (N, C)>, Option<N>)
where
    N: Eq + Hash + Clone,
    C: Zero + Ord + Copy,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = (N, C)>,
    FS: FnMut(&N) -> bool,
{
    let (parents, reached) = run_dijkstra(start, successors, stop);
    (
        parents
            .iter()
            .skip(1)
            .map(|(n, (p, c))| (n.clone(), (parents.get_index(*p).unwrap().0.clone(), *c)))
            .collect(),
        reached.map(|i| parents.get_index(i).unwrap().0.clone()),
    )
}

fn run_dijkstra<N, C, FN, IN, FS>(
    start: &N,
    mut successors: FN,
    mut stop: FS,
) -> (IndexMap<N, (usize, C)>, Option<usize>)
where
    N: Eq + Hash + Clone,
    C: Zero + Ord + Copy,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = (N, C)>,
    FS: FnMut(&N) -> bool,
{
    let mut to_see = BinaryHeap::new();
    to_see.push(SmallestHolder {
        cost: Zero::zero(),
        index: 0,
    });
    let mut parents: IndexMap<N, (usize, C)> = IndexMap::new();
    parents.insert(start.clone(), (usize::max_value(), Zero::zero()));
    let mut target_reached = None;
    while let Some(SmallestHolder { cost, index }) = to_see.pop() {
        let successors = {
            let (node, &(_, c)) = parents.get_index(index).unwrap();
            if stop(node) {
                target_reached = Some(index);
                break;
            }
            // We may have inserted a node several time into the binary heap if we found
            // a better way to access it. Ensure that we are currently dealing with the
            // best path and discard the others.
            if cost > c {
                continue;
            }
            successors(node)
        };
        for (successor, move_cost) in successors {
            let new_cost = cost + move_cost;
            let n;
            match parents.entry(successor) {
                Vacant(e) => {
                    n = e.index();
                    e.insert((index, new_cost));
                }
                Occupied(mut e) => {
                    if e.get().1 > new_cost {
                        n = e.index();
                        e.insert((index, new_cost));
                    } else {
                        continue;
                    }
                }
            }

            to_see.push(SmallestHolder {
                cost: new_cost,
                index: n,
            });
        }
    }
    (parents, target_reached)
}

/// Build a path leading to a target according to a parents map, which must
/// contain no loop. This function can be used after [`dijkstra_all`] or
/// [`dijkstra_partial`] to build a path from a starting point to a reachable target.
///
/// - `target` is reachable target.
/// - `parents` is a map containing an optimal parent (and an associated
///    cost which is ignored here) for every reachable node.
///
/// This function returns a vector with a path from the farthest parent up to
/// `target`, including `target` itself.
///
/// # Panics
///
/// If the `parents` map contains a loop, this function will attempt to build
/// a path of infinite length and panic when memory is exhausted.
#[allow(clippy::implicit_hasher)]
pub fn build_path<N, C>(target: &N, parents: &HashMap<N, (N, C)>) -> Vec<N>
where
    N: Eq + Hash + Clone,
{
    let mut rev = vec![target.clone()];
    let mut next = target.clone();
    while let Some((parent, _)) = parents.get(&next) {
        rev.push(parent.clone());
        next = parent.clone();
    }
    rev.reverse();
    rev
}

struct SmallestHolder<K> {
    cost: K,
    index: usize,
}

impl<K: PartialEq> PartialEq for SmallestHolder<K> {
    fn eq(&self, other: &Self) -> bool {
        self.cost == other.cost
    }
}

impl<K: PartialEq> Eq for SmallestHolder<K> {}

impl<K: Ord> PartialOrd for SmallestHolder<K> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<K: Ord> Ord for SmallestHolder<K> {
    fn cmp(&self, other: &Self) -> Ordering {
        other.cost.cmp(&self.cost)
    }
}