1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
//! Compute a shortest path using the [Dijkstra search //! algorithm](https://en.wikipedia.org/wiki/Dijkstra's_algorithm). use indexmap::map::Entry::{Occupied, Vacant}; use indexmap::IndexMap; use num_traits::Zero; use std::cmp::Ordering; use std::collections::{BinaryHeap, HashMap}; use std::hash::Hash; use std::usize; use super::reverse_path; /// Compute a shortest path using the [Dijkstra search /// algorithm](https://en.wikipedia.org/wiki/Dijkstra's_algorithm). /// /// The shortest path starting from `start` up to a node for which `success` returns `true` is /// computed and returned along with its total cost, in a `Some`. If no path can be found, `None` /// is returned instead. /// /// - `start` is the starting node. /// - `successors` returns a list of successors for a given node, along with the cost for moving /// from the node to the successor. /// - `success` checks whether the goal has been reached. It is not a node as some problems require /// a dynamic solution instead of a fixed node. /// /// A node will never be included twice in the path as determined by the `Eq` relationship. /// /// The returned path comprises both the start and end node. /// /// # Example /// /// We will search the shortest path on a chess board to go from (1, 1) to (4, 6) doing only knight /// moves. /// /// The first version uses an explicit type `Pos` on which the required traits are derived. /// /// ``` /// use pathfinding::prelude::dijkstra; /// /// #[derive(Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)] /// struct Pos(i32, i32); /// /// impl Pos { /// fn successors(&self) -> Vec<(Pos, usize)> { /// let &Pos(x, y) = self; /// vec![Pos(x+1,y+2), Pos(x+1,y-2), Pos(x-1,y+2), Pos(x-1,y-2), /// Pos(x+2,y+1), Pos(x+2,y-1), Pos(x-2,y+1), Pos(x-2,y-1)] /// .into_iter().map(|p| (p, 1)).collect() /// } /// } /// /// static GOAL: Pos = Pos(4, 6); /// let result = dijkstra(&Pos(1, 1), |p| p.successors(), |p| *p == GOAL); /// assert_eq!(result.expect("no path found").1, 4); /// ``` /// /// The second version does not declare a `Pos` type, makes use of more closures, /// and is thus shorter. /// /// ``` /// use pathfinding::prelude::dijkstra; /// /// static GOAL: (i32, i32) = (4, 6); /// let result = dijkstra(&(1, 1), /// |&(x, y)| vec![(x+1,y+2), (x+1,y-2), (x-1,y+2), (x-1,y-2), /// (x+2,y+1), (x+2,y-1), (x-2,y+1), (x-2,y-1)] /// .into_iter().map(|p| (p, 1)), /// |&p| p == GOAL); /// assert_eq!(result.expect("no path found").1, 4); /// ``` pub fn dijkstra<N, C, FN, IN, FS>(start: &N, successors: FN, success: FS) -> Option<(Vec<N>, C)> where N: Eq + Hash + Clone, C: Zero + Ord + Copy, FN: FnMut(&N) -> IN, IN: IntoIterator<Item = (N, C)>, FS: FnMut(&N) -> bool, { let (parents, reached) = run_dijkstra(start, successors, success); reached.map(|target| { ( reverse_path(&parents, |&(p, _)| p, target), parents.get_index(target).unwrap().1 .1, ) }) } /// Determine all reachable nodes from a starting point as well as the minimum cost to /// reach them and a possible optimal parent node /// using the [Dijkstra search algorithm](https://en.wikipedia.org/wiki/Dijkstra's_algorithm). /// /// - `start` is the starting node. /// - `successors` returns a list of successors for a given node, along with the cost for moving /// from the node to the successor. /// /// The result is a map where every reachable node (not including `start`) is associated with /// an optimal parent node and a cost. /// /// The [`build_path`] function can be used to build a full path from the starting point to one /// of the reachable targets. pub fn dijkstra_all<N, C, FN, IN>(start: &N, successors: FN) -> HashMap<N, (N, C)> where N: Eq + Hash + Clone, C: Zero + Ord + Copy, FN: FnMut(&N) -> IN, IN: IntoIterator<Item = (N, C)>, { dijkstra_partial(start, successors, |_| false).0 } /// Determine some reachable nodes from a starting point as well as the minimum cost to /// reach them and a possible optimal parent node /// using the [Dijkstra search algorithm](https://en.wikipedia.org/wiki/Dijkstra's_algorithm). /// /// - `start` is the starting node. /// - `successors` returns a list of successors for a given node, along with the cost for moving /// from the node to the successor. /// - `stop` is a function which is called every time a node is examined (including `start`). /// A `true` return value will stop the algorithm. /// /// The result is a map where every node examined before the algorithm stopped (not including /// `start`) is associated with an optimal parent node and a cost, as well as the node which /// caused the algorithm to stop if any. /// /// The [`build_path`] function can be used to build a full path from the starting point to one /// of the reachable targets. pub fn dijkstra_partial<N, C, FN, IN, FS>( start: &N, successors: FN, stop: FS, ) -> (HashMap<N, (N, C)>, Option<N>) where N: Eq + Hash + Clone, C: Zero + Ord + Copy, FN: FnMut(&N) -> IN, IN: IntoIterator<Item = (N, C)>, FS: FnMut(&N) -> bool, { let (parents, reached) = run_dijkstra(start, successors, stop); ( parents .iter() .skip(1) .map(|(n, (p, c))| (n.clone(), (parents.get_index(*p).unwrap().0.clone(), *c))) .collect(), reached.map(|i| parents.get_index(i).unwrap().0.clone()), ) } fn run_dijkstra<N, C, FN, IN, FS>( start: &N, mut successors: FN, mut stop: FS, ) -> (IndexMap<N, (usize, C)>, Option<usize>) where N: Eq + Hash + Clone, C: Zero + Ord + Copy, FN: FnMut(&N) -> IN, IN: IntoIterator<Item = (N, C)>, FS: FnMut(&N) -> bool, { let mut to_see = BinaryHeap::new(); to_see.push(SmallestHolder { cost: Zero::zero(), index: 0, }); let mut parents: IndexMap<N, (usize, C)> = IndexMap::new(); parents.insert(start.clone(), (usize::max_value(), Zero::zero())); let mut target_reached = None; while let Some(SmallestHolder { cost, index }) = to_see.pop() { let successors = { let (node, &(_, c)) = parents.get_index(index).unwrap(); if stop(node) { target_reached = Some(index); break; } // We may have inserted a node several time into the binary heap if we found // a better way to access it. Ensure that we are currently dealing with the // best path and discard the others. if cost > c { continue; } successors(node) }; for (successor, move_cost) in successors { let new_cost = cost + move_cost; let n; match parents.entry(successor) { Vacant(e) => { n = e.index(); e.insert((index, new_cost)); } Occupied(mut e) => { if e.get().1 > new_cost { n = e.index(); e.insert((index, new_cost)); } else { continue; } } } to_see.push(SmallestHolder { cost: new_cost, index: n, }); } } (parents, target_reached) } /// Build a path leading to a target according to a parents map, which must /// contain no loop. This function can be used after [`dijkstra_all`] or /// [`dijkstra_partial`] to build a path from a starting point to a reachable target. /// /// - `target` is reachable target. /// - `parents` is a map containing an optimal parent (and an associated /// cost which is ignored here) for every reachable node. /// /// This function returns a vector with a path from the farthest parent up to /// `target`, including `target` itself. /// /// # Panics /// /// If the `parents` map contains a loop, this function will attempt to build /// a path of infinite length and panic when memory is exhausted. #[allow(clippy::implicit_hasher)] pub fn build_path<N, C>(target: &N, parents: &HashMap<N, (N, C)>) -> Vec<N> where N: Eq + Hash + Clone, { let mut rev = vec![target.clone()]; let mut next = target.clone(); while let Some((parent, _)) = parents.get(&next) { rev.push(parent.clone()); next = parent.clone(); } rev.reverse(); rev } struct SmallestHolder<K> { cost: K, index: usize, } impl<K: PartialEq> PartialEq for SmallestHolder<K> { fn eq(&self, other: &Self) -> bool { self.cost == other.cost } } impl<K: PartialEq> Eq for SmallestHolder<K> {} impl<K: Ord> PartialOrd for SmallestHolder<K> { fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(self.cmp(other)) } } impl<K: Ord> Ord for SmallestHolder<K> { fn cmp(&self, other: &Self) -> Ordering { other.cost.cmp(&self.cost) } }