1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
//! Compute a shortest path using the [Dijkstra search
//! algorithm](https://en.wikipedia.org/wiki/Dijkstra's_algorithm).

use indexmap::map::Entry::{Occupied, Vacant};
use indexmap::IndexMap;
use num_traits::Zero;
use std::cmp::Ordering;
use std::collections::{BinaryHeap, HashMap};
use std::hash::Hash;
use std::usize;

use super::reverse_path;

/// Compute a shortest path using the [Dijkstra search
/// algorithm](https://en.wikipedia.org/wiki/Dijkstra's_algorithm).
///
/// The shortest path starting from `start` up to a node for which `success` returns `true` is
/// computed and returned along with its total cost, in a `Some`. If no path can be found, `None`
/// is returned instead.
///
/// - `start` is the starting node.
/// - `successors` returns a list of successors for a given node, along with the cost for moving
/// from the node to the successor.
/// - `success` checks whether the goal has been reached. It is not a node as some problems require
/// a dynamic solution instead of a fixed node.
///
/// A node will never be included twice in the path as determined by the `Eq` relationship.
///
/// The returned path comprises both the start and end node.
///
/// # Example
///
/// We will search the shortest path on a chess board to go from (1, 1) to (4, 6) doing only knight
/// moves.
///
/// The first version uses an explicit type `Pos` on which the required traits are derived.
///
/// ```
/// use pathfinding::prelude::dijkstra;
///
/// #[derive(Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
/// struct Pos(i32, i32);
///
/// impl Pos {
///   fn successors(&self) -> Vec<(Pos, usize)> {
///     let &Pos(x, y) = self;
///     vec![Pos(x+1,y+2), Pos(x+1,y-2), Pos(x-1,y+2), Pos(x-1,y-2),
///          Pos(x+2,y+1), Pos(x+2,y-1), Pos(x-2,y+1), Pos(x-2,y-1)]
///          .into_iter().map(|p| (p, 1)).collect()
///   }
/// }
///
/// static GOAL: Pos = Pos(4, 6);
/// let result = dijkstra(&Pos(1, 1), |p| p.successors(), |p| *p == GOAL);
/// assert_eq!(result.expect("no path found").1, 4);
/// ```
///
/// The second version does not declare a `Pos` type, makes use of more closures,
/// and is thus shorter.
///
/// ```
/// use pathfinding::prelude::dijkstra;
///
/// static GOAL: (i32, i32) = (4, 6);
/// let result = dijkstra(&(1, 1),
///                       |&(x, y)| vec![(x+1,y+2), (x+1,y-2), (x-1,y+2), (x-1,y-2),
///                                      (x+2,y+1), (x+2,y-1), (x-2,y+1), (x-2,y-1)]
///                                  .into_iter().map(|p| (p, 1)),
///                       |&p| p == GOAL);
/// assert_eq!(result.expect("no path found").1, 4);
/// ```
pub fn dijkstra<N, C, FN, IN, FS>(start: &N, successors: FN, success: FS) -> Option<(Vec<N>, C)>
where
    N: Eq + Hash + Clone,
    C: Zero + Ord + Copy,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = (N, C)>,
    FS: FnMut(&N) -> bool,
{
    let (parents, reached) = run_dijkstra(start, successors, success);
    reached.map(|target| {
        (
            reverse_path(&parents, |&(p, _)| p, target),
            parents.get_index(target).unwrap().1 .1,
        )
    })
}

/// Determine all reachable nodes from a starting point as well as the minimum cost to
/// reach them and a possible optimal parent node
/// using the [Dijkstra search algorithm](https://en.wikipedia.org/wiki/Dijkstra's_algorithm).
///
/// - `start` is the starting node.
/// - `successors` returns a list of successors for a given node, along with the cost for moving
/// from the node to the successor.
///
/// The result is a map where every reachable node (not including `start`) is associated with
/// an optimal parent node and a cost.
///
/// The [`build_path`] function can be used to build a full path from the starting point to one
/// of the reachable targets.
pub fn dijkstra_all<N, C, FN, IN>(start: &N, successors: FN) -> HashMap<N, (N, C)>
where
    N: Eq + Hash + Clone,
    C: Zero + Ord + Copy,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = (N, C)>,
{
    dijkstra_partial(start, successors, |_| false).0
}

/// Determine some reachable nodes from a starting point as well as the minimum cost to
/// reach them and a possible optimal parent node
/// using the [Dijkstra search algorithm](https://en.wikipedia.org/wiki/Dijkstra's_algorithm).
///
/// - `start` is the starting node.
/// - `successors` returns a list of successors for a given node, along with the cost for moving
/// from the node to the successor.
/// - `stop` is a function which is called every time a node is examined (including `start`).
///   A `true` return value will stop the algorithm.
///
/// The result is a map where every node examined before the algorithm stopped (not including
/// `start`) is associated with an optimal parent node and a cost, as well as the node which
/// caused the algorithm to stop if any.
///
/// The [`build_path`] function can be used to build a full path from the starting point to one
/// of the reachable targets.
pub fn dijkstra_partial<N, C, FN, IN, FS>(
    start: &N,
    successors: FN,
    stop: FS,
) -> (HashMap<N, (N, C)>, Option<N>)
where
    N: Eq + Hash + Clone,
    C: Zero + Ord + Copy,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = (N, C)>,
    FS: FnMut(&N) -> bool,
{
    let (parents, reached) = run_dijkstra(start, successors, stop);
    (
        parents
            .iter()
            .skip(1)
            .map(|(n, (p, c))| (n.clone(), (parents.get_index(*p).unwrap().0.clone(), *c)))
            .collect(),
        reached.map(|i| parents.get_index(i).unwrap().0.clone()),
    )
}

fn run_dijkstra<N, C, FN, IN, FS>(
    start: &N,
    mut successors: FN,
    mut stop: FS,
) -> (IndexMap<N, (usize, C)>, Option<usize>)
where
    N: Eq + Hash + Clone,
    C: Zero + Ord + Copy,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = (N, C)>,
    FS: FnMut(&N) -> bool,
{
    let mut to_see = BinaryHeap::new();
    to_see.push(SmallestHolder {
        cost: Zero::zero(),
        index: 0,
    });
    let mut parents: IndexMap<N, (usize, C)> = IndexMap::new();
    parents.insert(start.clone(), (usize::max_value(), Zero::zero()));
    let mut target_reached = None;
    while let Some(SmallestHolder { cost, index }) = to_see.pop() {
        let successors = {
            let (node, &(_, c)) = parents.get_index(index).unwrap();
            if stop(node) {
                target_reached = Some(index);
                break;
            }
            // We may have inserted a node several time into the binary heap if we found
            // a better way to access it. Ensure that we are currently dealing with the
            // best path and discard the others.
            if cost > c {
                continue;
            }
            successors(node)
        };
        for (successor, move_cost) in successors {
            let new_cost = cost + move_cost;
            let n;
            match parents.entry(successor) {
                Vacant(e) => {
                    n = e.index();
                    e.insert((index, new_cost));
                }
                Occupied(mut e) => {
                    if e.get().1 > new_cost {
                        n = e.index();
                        e.insert((index, new_cost));
                    } else {
                        continue;
                    }
                }
            }

            to_see.push(SmallestHolder {
                cost: new_cost,
                index: n,
            });
        }
    }
    (parents, target_reached)
}

/// Build a path leading to a target according to a parents map, which must
/// contain no loop. This function can be used after [`dijkstra_all`] or
/// [`dijkstra_partial`] to build a path from a starting point to a reachable target.
///
/// - `target` is reachable target.
/// - `parents` is a map containing an optimal parent (and an associated
///    cost which is ignored here) for every reachable node.
///
/// This function returns a vector with a path from the farthest parent up to
/// `target`, including `target` itself.
///
/// # Panics
///
/// If the `parents` map contains a loop, this function will attempt to build
/// a path of infinite length and panic when memory is exhausted.
#[allow(clippy::implicit_hasher)]
pub fn build_path<N, C>(target: &N, parents: &HashMap<N, (N, C)>) -> Vec<N>
where
    N: Eq + Hash + Clone,
{
    let mut rev = vec![target.clone()];
    let mut next = target.clone();
    while let Some((parent, _)) = parents.get(&next) {
        rev.push(parent.clone());
        next = parent.clone();
    }
    rev.reverse();
    rev
}

struct SmallestHolder<K> {
    cost: K,
    index: usize,
}

impl<K: PartialEq> PartialEq for SmallestHolder<K> {
    fn eq(&self, other: &Self) -> bool {
        self.cost == other.cost
    }
}

impl<K: PartialEq> Eq for SmallestHolder<K> {}

impl<K: Ord> PartialOrd for SmallestHolder<K> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<K: Ord> Ord for SmallestHolder<K> {
    fn cmp(&self, other: &Self) -> Ordering {
        other.cost.cmp(&self.cost)
    }
}