Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
// Copyright 2016 - 2018 Ulrik Sverdrup "bluss"
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use core::cmp::min;
use core::mem::size_of;
use core::ptr::copy_nonoverlapping;

use aligned_alloc::Alloc;

use util::range_chunk;
use util::round_up_to;

use kernel::ConstNum;
use kernel::Element;
use kernel::GemmKernel;
use kernel::GemmSelect;
use sgemm_kernel;
use dgemm_kernel;
use rawpointer::PointerExt;

/// General matrix multiplication (f32)
///
/// C ← α A B + β C
///
/// + m, k, n: dimensions
/// + a, b, c: pointer to the first element in the matrix
/// + A: m by k matrix
/// + B: k by n matrix
/// + C: m by n matrix
/// + rs<em>x</em>: row stride of *x*
/// + cs<em>x</em>: col stride of *x*
///
/// Strides for A and B may be arbitrary. Strides for C must not result in
/// elements that alias each other, for example they can not be zero.
///
/// If β is zero, then C does not need to be initialized.
pub unsafe fn sgemm(
    m: usize, k: usize, n: usize,
    alpha: f32,
    a: *const f32, rsa: isize, csa: isize,
    b: *const f32, rsb: isize, csb: isize,
    beta: f32,
    c: *mut f32, rsc: isize, csc: isize)
{
    sgemm_kernel::detect(GemmParameters { m, k, n,
                alpha,
                a, rsa, csa,
                b, rsb, csb,
                beta,
                c, rsc, csc})
}

/// General matrix multiplication (f64)
///
/// C ← α A B + β C
///
/// + m, k, n: dimensions
/// + a, b, c: pointer to the first element in the matrix
/// + A: m by k matrix
/// + B: k by n matrix
/// + C: m by n matrix
/// + rs<em>x</em>: row stride of *x*
/// + cs<em>x</em>: col stride of *x*
///
/// Strides for A and B may be arbitrary. Strides for C must not result in
/// elements that alias each other, for example they can not be zero.
///
/// If β is zero, then C does not need to be initialized.
pub unsafe fn dgemm(
    m: usize, k: usize, n: usize,
    alpha: f64,
    a: *const f64, rsa: isize, csa: isize,
    b: *const f64, rsb: isize, csb: isize,
    beta: f64,
    c: *mut f64, rsc: isize, csc: isize)
{
    dgemm_kernel::detect(GemmParameters { m, k, n,
                alpha,
                a, rsa, csa,
                b, rsb, csb,
                beta,
                c, rsc, csc})
}

struct GemmParameters<T> {
    // Parameters grouped logically in rows
    m: usize, k: usize, n: usize,
    alpha: T,
    a: *const T, rsa: isize, csa: isize,
    beta: T,
    b: *const T, rsb: isize, csb: isize,
    c:   *mut T, rsc: isize, csc: isize,
}

impl<T> GemmSelect<T> for GemmParameters<T> {
    fn select<K>(self, _kernel: K)
       where K: GemmKernel<Elem=T>,
             T: Element,
    {
        // This is where we enter with the configuration specific kernel
        // We could cache kernel specific function pointers here, if we
        // needed to support more constly configuration detection.
        let GemmParameters {
            m, k, n,
            alpha,
            a, rsa, csa,
            b, rsb, csb,
            beta,
            c, rsc, csc} = self;

        unsafe {
            gemm_loop::<K>(
                m, k, n,
                alpha,
                a, rsa, csa,
                b, rsb, csb,
                beta,
                c, rsc, csc)
        }
    }
}


/// Ensure that GemmKernel parameters are supported
/// (alignment, microkernel size).
///
/// This function is optimized out for a supported configuration.
#[inline(always)]
fn ensure_kernel_params<K>()
    where K: GemmKernel
{
    let mr = K::MR;
    let nr = K::NR;
    assert!(mr > 0 && mr <= 8);
    assert!(nr > 0 && nr <= 8);
    assert!(mr * nr * size_of::<K::Elem>() <= 8 * 4 * 8);
    assert!(K::align_to() <= 32);
    // one row/col of the kernel is limiting the max align we can provide
    let max_align = size_of::<K::Elem>() * min(mr, nr);
    assert!(K::align_to() <= max_align);
}

/// Implement matrix multiply using packed buffers and a microkernel
/// strategy, the type parameter `K` is the gemm microkernel.
// no inline is best for the default case, where we support many K per
// gemm entry point. FIXME: make this conditional on feature detection
#[inline(never)]
unsafe fn gemm_loop<K>(
    m: usize, k: usize, n: usize,
    alpha: K::Elem,
    a: *const K::Elem, rsa: isize, csa: isize,
    b: *const K::Elem, rsb: isize, csb: isize,
    beta: K::Elem,
    c: *mut K::Elem, rsc: isize, csc: isize)
    where K: GemmKernel
{
    debug_assert!(m <= 1 || n == 0 || rsc != 0);
    debug_assert!(m == 0 || n <= 1 || csc != 0);

    // if A or B have no elements, compute C ← βC and return
    if m == 0 || k == 0 || n == 0 {
        return c_to_beta_c(m, n, beta, c, rsc, csc);
    }

    let knc = K::nc();
    let kkc = K::kc();
    let kmc = K::mc();
    ensure_kernel_params::<K>();

    let (mut packing_buffer, bp_offset) = make_packing_buffer::<K>(m, k, n);
    let app = packing_buffer.ptr_mut();
    let bpp = app.add(bp_offset);

    // LOOP 5: split n into nc parts (B, C)
    for (l5, nc) in range_chunk(n, knc) {
        dprint!("LOOP 5, {}, nc={}", l5, nc);
        let b = b.stride_offset(csb, knc * l5);
        let c = c.stride_offset(csc, knc * l5);

        // LOOP 4: split k in kc parts (A, B)
        for (l4, kc) in range_chunk(k, kkc) {
            dprint!("LOOP 4, {}, kc={}", l4, kc);
            let b = b.stride_offset(rsb, kkc * l4);
            let a = a.stride_offset(csa, kkc * l4);

            // Pack B -> B~
            pack::<K::NRTy, _>(kc, nc, bpp, b, csb, rsb);

            // LOOP 3: split m into mc parts (A, C)
            for (l3, mc) in range_chunk(m, kmc) {
                dprint!("LOOP 3, {}, mc={}", l3, mc);
                let a = a.stride_offset(rsa, kmc * l3);
                let c = c.stride_offset(rsc, kmc * l3);

                // Pack A -> A~
                pack::<K::MRTy, _>(kc, mc, app, a, rsa, csa);

                // First time writing to C, use user's `beta`, else accumulate
                let betap = if l4 == 0 { beta } else { <_>::one() };

                // LOOP 2 and 1
                gemm_packed::<K>(nc, kc, mc,
                                 alpha,
                                 app, bpp,
                                 betap,
                                 c, rsc, csc);
            }
        }
    }
}

/// Loops 1 and 2 around the µ-kernel
///
/// + app: packed A (A~)
/// + bpp: packed B (B~)
/// + nc: columns of packed B
/// + kc: columns of packed A / rows of packed B
/// + mc: rows of packed A
unsafe fn gemm_packed<K>(nc: usize, kc: usize, mc: usize,
                         alpha: K::Elem,
                         app: *const K::Elem, bpp: *const K::Elem,
                         beta: K::Elem,
                         c: *mut K::Elem, rsc: isize, csc: isize)
    where K: GemmKernel,
{
    let mr = K::MR;
    let nr = K::NR;
    // make a mask buffer that fits 8 x 8 f32 and 8 x 4 f64 kernels and alignment
    assert!(mr * nr * size_of::<K::Elem>() <= 256 && K::align_to() <= 32);
    let mut mask_buf = [0u8; 256 + 31];
    let mask_ptr = align_ptr(32, mask_buf.as_mut_ptr()) as *mut K::Elem;

    // LOOP 2: through micropanels in packed `b` (B~, C)
    for (l2, nr_) in range_chunk(nc, nr) {
        let bpp = bpp.stride_offset(1, kc * nr * l2);
        let c = c.stride_offset(csc, nr * l2);

        // LOOP 1: through micropanels in packed `a` while `b` is constant (A~, C)
        for (l1, mr_) in range_chunk(mc, mr) {
            let app = app.stride_offset(1, kc * mr * l1);
            let c = c.stride_offset(rsc, mr * l1);

            // GEMM KERNEL
            // NOTE: For the rust kernels, it performs better to simply
            // always use the masked kernel function!
            if K::always_masked() || nr_ < nr || mr_ < mr {
                masked_kernel::<_, K>(kc, alpha, &*app, &*bpp,
                                      beta, &mut *c, rsc, csc,
                                      mr_, nr_, mask_ptr);
                continue;
            } else {
                K::kernel(kc, alpha, app, bpp, beta, c, rsc, csc);
            }
        }
    }
}

/// Allocate a vector of uninitialized data to be used for both packing buffers.
///
/// + A~ needs be KC x MC
/// + B~ needs be KC x NC
/// but we can make them smaller if the matrix is smaller than this (just ensure
/// we have rounded up to a multiple of the kernel size).
///
/// Return packing buffer and offset to start of b
unsafe fn make_packing_buffer<K>(m: usize, k: usize, n: usize) -> (Alloc<K::Elem>, usize)
    where K: GemmKernel,
{
    // max alignment requirement is a multiple of min(MR, NR) * sizeof<Elem>
    // because apack_size is a multiple of MR, start of b aligns fine
    let m = min(m, K::mc());
    let k = min(k, K::kc());
    let n = min(n, K::nc());
    // round up k, n to multiples of mr, nr
    // round up to multiple of kc
    let apack_size = k * round_up_to(m, K::MR);
    let bpack_size = k * round_up_to(n, K::NR);
    let nelem = apack_size + bpack_size;

    dprint!("packed nelem={}, apack={}, bpack={},
             m={} k={} n={}",
             nelem, apack_size, bpack_size,
             m,k,n);

    (Alloc::new(nelem, K::align_to()), apack_size)
}

/// offset the ptr forwards to align to a specific byte count
unsafe fn align_ptr<U>(align_to: usize, mut ptr: *mut U) -> *mut U {
    if align_to != 0 {
        let cur_align = ptr as usize % align_to;
        if cur_align != 0 {
            ptr = ptr.offset(((align_to - cur_align) / size_of::<U>()) as isize);
        }
    }
    ptr
}

/// Pack matrix into `pack`
///
/// + kc: length of the micropanel
/// + mc: number of rows/columns in the matrix to be packed
/// + pack: packing buffer
/// + a: matrix,
/// + rsa: row stride
/// + csa: column stride
///
/// + MR: kernel rows/columns that we round up to
unsafe fn pack<MR, T>(kc: usize, mc: usize, pack: *mut T,
                      a: *const T, rsa: isize, csa: isize)
    where T: Element,
          MR: ConstNum,
{
    let mr = MR::VALUE;
    let mut p = 0; // offset into pack

    if rsa == 1 {
        // if the matrix is contiguous in the same direction we are packing,
        // copy a kernel row at a time.
        for ir in 0..mc/mr {
            let row_offset = ir * mr;
            for j in 0..kc {
                let a_row = a.stride_offset(rsa, row_offset)
                             .stride_offset(csa, j);
                copy_nonoverlapping(a_row, pack.add(p), mr);
                p += mr;
            }
        }
    } else {
        // general layout case
        for ir in 0..mc/mr {
            let row_offset = ir * mr;
            for j in 0..kc {
                for i in 0..mr {
                    let a_elt = a.stride_offset(rsa, i + row_offset)
                                 .stride_offset(csa, j);
                    copy_nonoverlapping(a_elt, pack.add(p), 1);
                    p += 1;
                }
            }
        }
    }

    let zero = <_>::zero();

    // Pad with zeros to multiple of kernel size (uneven mc)
    let rest = mc % mr;
    if rest > 0 {
        let row_offset = (mc/mr) * mr;
        for j in 0..kc {
            for i in 0..mr {
                if i < rest {
                    let a_elt = a.stride_offset(rsa, i + row_offset)
                                 .stride_offset(csa, j);
                    copy_nonoverlapping(a_elt, pack.add(p), 1);
                } else {
                    *pack.add(p) = zero;
                }
                p += 1;
            }
        }
    }
}

/// Call the GEMM kernel with a "masked" output C.
/// 
/// Simply redirect the MR by NR kernel output to the passed
/// in `mask_buf`, and copy the non masked region to the real
/// C.
///
/// + rows: rows of kernel unmasked
/// + cols: cols of kernel unmasked
#[inline(never)]
unsafe fn masked_kernel<T, K>(k: usize, alpha: T,
                              a: *const T,
                              b: *const T,
                              beta: T,
                              c: *mut T, rsc: isize, csc: isize,
                              rows: usize, cols: usize,
                              mask_buf: *mut T)
    where K: GemmKernel<Elem=T>, T: Element,
{
    // use column major order for `mask_buf`
    K::kernel(k, alpha, a, b, T::zero(), mask_buf, 1, K::MR as isize);
    c_to_masked_ab_beta_c::<_, K>(beta, c, rsc, csc, rows, cols, &*mask_buf);
}

/// Copy output in `mask_buf` to the actual c matrix
///
/// C ← M + βC  where M is the `mask_buf`
#[inline]
unsafe fn c_to_masked_ab_beta_c<T, K>(beta: T,
                                      c: *mut T, rsc: isize, csc: isize,
                                      rows: usize, cols: usize,
                                      mask_buf: &T)
    where K: GemmKernel<Elem=T>, T: Element,
{
    // note: use separate function here with `&T` argument for mask buf,
    // so that the compiler sees that `c` and `mask_buf` never alias.
    let mr = K::MR;
    let nr = K::NR;
    let mut ab: *const _ = mask_buf;
    for j in 0..nr {
        for i in 0..mr {
            if i < rows && j < cols {
                let cptr = c.stride_offset(rsc, i)
                            .stride_offset(csc, j);
                if beta.is_zero() {
                    *cptr = *ab; // initialize
                } else {
                    *cptr *= beta;
                    *cptr += *ab;
                }
            }
            ab.inc();
        }
    }
}

// Compute just C ← βC
unsafe fn c_to_beta_c<T>(m: usize, n: usize, beta: T,
                         c: *mut T, rsc: isize, csc: isize)
    where T: Element
{
    for i in 0..m {
        for j in 0..n {
            let cptr = c.stride_offset(rsc, i)
                        .stride_offset(csc, j);
            if beta.is_zero() {
                *cptr = T::zero(); // initialize C
            } else {
                *cptr *= beta;
            }
        }
    }
}