1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
use super::{IndexBuffer, TriMesh};
use crate::math::{Point, Vector};
use na::{self, Point2, Point3, RealField};
pub fn quad<N: RealField>(width: N, height: N, usubdivs: usize, vsubdivs: usize) -> TriMesh<N> {
let mut quad = unit_quad(usubdivs, vsubdivs);
let mut s = Vector::zeros();
s[0] = width;
s[1] = height;
for i in 2..3 {
s[i] = na::one();
}
quad.scale_by(&s);
quad
}
pub fn quad_with_vertices<N: RealField>(
vertices: &[Point<N>],
nhpoints: usize,
nvpoints: usize,
) -> TriMesh<N> {
assert!(
nhpoints > 1 && nvpoints > 1,
"The number of points must be at least 2 in each dimension."
);
let mut res = unit_quad(nhpoints - 1, nvpoints - 1);
for (dest, src) in res.coords.iter_mut().zip(vertices.iter()) {
*dest = src.clone();
}
res
}
pub fn unit_quad<N: RealField>(usubdivs: usize, vsubdivs: usize) -> TriMesh<N> {
assert!(
usubdivs > 0 && vsubdivs > 0,
"The number of subdivisions cannot be zero"
);
assert!(3 >= 2);
let wstep = na::one::<N>() / na::convert(usubdivs as f64);
let hstep = na::one::<N>() / na::convert(vsubdivs as f64);
let cw = na::convert(0.5);
let ch = na::convert(0.5);
let mut vertices = Vec::new();
let mut normals = Vec::new();
let mut triangles = Vec::new();
let mut tex_coords = Vec::new();
for i in 0usize..vsubdivs + 1 {
for j in 0usize..usubdivs + 1 {
let ni: N = na::convert(i as f64);
let nj: N = na::convert(j as f64);
let mut v = Point::origin();
v[0] = nj * wstep - cw;
v[1] = ni * hstep - ch;
vertices.push(v);
let _1 = na::one::<N>();
tex_coords.push(Point2::new(_1 - nj * wstep, _1 - ni * hstep))
}
}
for _ in 0..(vsubdivs + 1) * (usubdivs + 1) {
let mut n = Vector::zeros();
n[0] = na::one();
normals.push(n)
}
fn dl_triangle(i: u32, j: u32, ws: u32) -> Point3<u32> {
Point3::new((i + 1) * ws + j, i * ws + j, (i + 1) * ws + j + 1)
}
fn ur_triangle(i: u32, j: u32, ws: u32) -> Point3<u32> {
Point3::new(i * ws + j, i * ws + (j + 1), (i + 1) * ws + j + 1)
}
for i in 0usize..vsubdivs {
for j in 0usize..usubdivs {
triangles.push(dl_triangle(i as u32, j as u32, (usubdivs + 1) as u32));
triangles.push(ur_triangle(i as u32, j as u32, (usubdivs + 1) as u32));
}
}
TriMesh::new(
vertices,
Some(normals),
Some(tex_coords),
Some(IndexBuffer::Unified(triangles)),
)
}