Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
//! Bit level parsers and combinators
//!
//! Bit parsing is handled by tweaking the input in most macros.
//! In byte level parsing, the input is generally a `&[u8]` passed from combinator
//! to combinator as the slices are manipulated.
//!
//! Bit parsers take a `(&[u8], usize)` as input. The first part of the tuple is a byte slice,
//! the second part is a bit offset in the first byte of the slice.
//!
//! By passing a pair like this, we can leverage most of the existing combinators, and avoid
//! transforming the whole slice to a vector of booleans. This should make it easy
//! to see a byte slice as a bit stream, and parse code points of arbitrary bit length.
//!

/// Transforms its byte slice input into a bit stream for the underlying parser. This allows the
/// given bit stream parser to work on a byte slice input.
///
/// Signature:
/// `bits!( parser ) => ( &[u8], (&[u8], usize) -> IResult<(&[u8], usize), T> ) -> IResult<&[u8], T>`
///
/// ```
/// # #[macro_use] extern crate nom;
/// # use nom::{Err, Needed};
/// # fn main() {
///  named!( take_4_bits<u8>, bits!( take_bits!( 4u8 ) ) );
///
///  let input = vec![0xAB, 0xCD, 0xEF, 0x12];
///  let sl    = &input[..];
///
///  assert_eq!(take_4_bits( sl ), Ok( (&sl[1..], 0xA) ));
///  assert_eq!(take_4_bits( &b""[..] ), Err(Err::Incomplete(Needed::Size(1))));
/// # }
#[macro_export(local_inner_macros)]
macro_rules! bits (
  ($i:expr, $submac:ident!( $($args:tt)* )) => ({
    $crate::bits::bitsc($i, move |i| { $submac!(i, $($args)*) })
  });
  ($i:expr, $f:expr) => (
    bits!($i, call!($f))
  );
);

/// Counterpart to bits, bytes! transforms its bit stream input into a byte slice for the underlying
/// parser, allowing byte-slice parsers to work on bit streams.
///
/// Signature:
/// `bytes!( parser ) => ( (&[u8], usize), &[u8] -> IResult<&[u8], T> ) -> IResult<(&[u8], usize), T>`,
///
/// A partial byte remaining in the input will be ignored and the given parser will start parsing
/// at the next full byte.
///
/// ```
/// # #[macro_use] extern crate nom;
/// # use nom::combinator::rest;
/// # use nom::error::ErrorKind;
/// # fn main() {
///
/// named!( parse<(u8, u8, &[u8])>,  bits!( tuple!(
///    take_bits!(4u8),
///    take_bits!(8u8),
///    bytes!(rest::<_, (_, ErrorKind)>)
/// )));
///
///  let input = &[0xde, 0xad, 0xbe, 0xaf];
///
///  assert_eq!(parse( input ), Ok(( &[][..], (0xd, 0xea, &[0xbe, 0xaf][..]) )));
/// # }
#[macro_export(local_inner_macros)]
macro_rules! bytes (
  ($i:expr, $submac:ident!( $($args:tt)* )) => ({
    $crate::bits::bytesc($i, move |i| { $submac!(i, $($args)*) })
  });
  ($i:expr, $f:expr) => (
    bytes!($i, call!($f))
  );
);

/// Consumes the specified number of bits and returns them as the specified type.
///
/// Signature:
/// `take_bits!(type, count) => ( (&[T], usize), U, usize) -> IResult<(&[T], usize), U>`
///
/// ```
/// # #[macro_use] extern crate nom;
/// # fn main() {
/// named!(bits_pair<(&[u8], usize), (u8, u8)>, pair!( take_bits!(4u8), take_bits!(4u8) ) );
/// named!( take_pair<(u8, u8)>, bits!( bits_pair ) );
///
/// let input = vec![0xAB, 0xCD, 0xEF];
/// let sl    = &input[..];
///
/// assert_eq!(take_pair( sl ),       Ok((&sl[1..], (0xA, 0xB))) );
/// assert_eq!(take_pair( &sl[1..] ), Ok((&sl[2..], (0xC, 0xD))) );
/// # }
/// ```
#[macro_export(local_inner_macros)]
macro_rules! take_bits (
  ($i:expr, $count:expr) => (
    {
      let res: $crate::IResult<_, _> = $crate::bits::streaming::take($count)($i);
      res
    }
  );
);

/// Matches the given bit pattern.
///
/// Signature:
/// `tag_bits!(type, count, pattern) => ( (&[T], usize), U, usize, U) -> IResult<(&[T], usize), U>`
///
/// The caller must specify the number of bits to consume. The matched value is included in the
/// result on success.
///
/// ```
/// # #[macro_use] extern crate nom;
/// # fn main() {
///  named!( take_a<u8>, bits!( tag_bits!(4usize, 0xA) ) );
///
///  let input = vec![0xAB, 0xCD, 0xEF];
///  let sl    = &input[..];
///
///  assert_eq!(take_a( sl ),       Ok((&sl[1..], 0xA)) );
/// # }
/// ```
#[macro_export(local_inner_macros)]
macro_rules! tag_bits (
  ($i:expr, $count:expr, $p: expr) => (
    {
      let res: $crate::IResult<_, _> = $crate::bits::streaming::tag($p, $count)($i);
      res
    }
  )
);

#[cfg(test)]
mod tests {
  use crate::lib::std::ops::{AddAssign, Shl, Shr};
  use crate::internal::{Err, Needed, IResult};
  use crate::error::ErrorKind;

  #[test]
  fn take_bits() {
    let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11];
    let sl = &input[..];

    assert_eq!(take_bits!((sl, 0), 0u8), Ok(((sl, 0), 0)));
    assert_eq!(take_bits!((sl, 0), 8u8), Ok(((&sl[1..], 0), 170)));
    assert_eq!(take_bits!((sl, 0), 3u8), Ok(((&sl[0..], 3), 5)));
    assert_eq!(take_bits!((sl, 0), 6u8), Ok(((&sl[0..], 6), 42)));
    assert_eq!(take_bits!((sl, 1), 1u8), Ok(((&sl[0..], 2), 0)));
    assert_eq!(take_bits!((sl, 1), 2u8), Ok(((&sl[0..], 3), 1)));
    assert_eq!(take_bits!((sl, 1), 3u8), Ok(((&sl[0..], 4), 2)));
    assert_eq!(take_bits!((sl, 6), 3u8), Ok(((&sl[1..], 1), 5)));
    assert_eq!(take_bits!((sl, 0), 10u8), Ok(((&sl[1..], 2), 683)));
    assert_eq!(take_bits!((sl, 0), 8u8), Ok(((&sl[1..], 0), 170)));
    assert_eq!(take_bits!((sl, 6), 10u8), Ok(((&sl[2..], 0), 752)));
    assert_eq!(take_bits!((sl, 6), 11u8), Ok(((&sl[2..], 1), 1504)));
    assert_eq!(take_bits!((sl, 0), 20u8), Ok(((&sl[2..], 4), 700_163)));
    assert_eq!(take_bits!((sl, 4), 20u8), Ok(((&sl[3..], 0), 716_851)));
    let r: IResult<_,u32> = take_bits!((sl, 4), 22u8);
    assert_eq!(
      r,
      Err(Err::Incomplete(Needed::Size(22)))
    );
  }

  #[test]
  fn tag_bits() {
    let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11];
    let sl = &input[..];

    assert_eq!(tag_bits!((sl, 0), 3u8, 0b101), Ok(((&sl[0..], 3), 5)));
    assert_eq!(tag_bits!((sl, 0), 4u8, 0b1010), Ok(((&sl[0..], 4), 10)));
  }

  named!(ch<(&[u8],usize),(u8,u8)>,
    do_parse!(
      tag_bits!(3u8, 0b101) >>
      x: take_bits!(4u8)    >>
      y: take_bits!(5u8)    >>
      (x,y)
    )
  );

  #[test]
  fn chain_bits() {
    let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11];
    let sl = &input[..];
    assert_eq!(ch((&input[..], 0)), Ok(((&sl[1..], 4), (5, 15))));
    assert_eq!(ch((&input[..], 4)), Ok(((&sl[2..], 0), (7, 16))));
    assert_eq!(ch((&input[..1], 0)), Err(Err::Incomplete(Needed::Size(5))));
  }

  named!(ch_bytes<(u8, u8)>, bits!(ch));
  #[test]
  fn bits_to_bytes() {
    let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11];
    assert_eq!(ch_bytes(&input[..]), Ok((&input[2..], (5, 15))));
    assert_eq!(ch_bytes(&input[..1]), Err(Err::Incomplete(Needed::Size(1))));
    assert_eq!(
      ch_bytes(&input[1..]),
      Err(Err::Error(error_position!(&input[1..], ErrorKind::TagBits)))
    );
  }

  named!(bits_bytes_bs, bits!(bytes!(crate::combinator::rest::<_, (&[u8], ErrorKind)>)));
  #[test]
  fn bits_bytes() {
    let input = [0b10_10_10_10];
    assert_eq!(bits_bytes_bs(&input[..]), Ok((&[][..], &[0b10_10_10_10][..])));
  }

  #[derive(PartialEq, Debug)]
  struct FakeUint(u32);

  impl AddAssign for FakeUint {
    fn add_assign(&mut self, other: FakeUint) {
      *self = FakeUint(self.0 + other.0);
    }
  }

  impl Shr<usize> for FakeUint {
    type Output = FakeUint;

    fn shr(self, shift: usize) -> FakeUint {
      FakeUint(self.0 >> shift)
    }
  }

  impl Shl<usize> for FakeUint {
    type Output = FakeUint;

    fn shl(self, shift: usize) -> FakeUint {
      FakeUint(self.0 << shift)
    }
  }

  impl From<u8> for FakeUint {
    fn from(i: u8) -> FakeUint {
      FakeUint(u32::from(i))
    }
  }

  #[test]
  fn non_privitive_type() {
    let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11];
    let sl = &input[..];

    assert_eq!(
      take_bits!((sl, 0), 20u8),
      Ok(((&sl[2..], 4), FakeUint(700_163)))
    );
    assert_eq!(
      take_bits!((sl, 4), 20u8),
      Ok(((&sl[3..], 0), FakeUint(716_851)))
    );
    let r3: IResult<_, FakeUint> = take_bits!((sl, 4), 22u8);
    assert_eq!(
      r3,
      Err(Err::Incomplete(Needed::Size(22)))
    );
  }
}