Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
use std::mem;

use packed::pattern::{PatternID, Patterns};
use Match;

/// The type of the rolling hash used in the Rabin-Karp algorithm.
type Hash = usize;

/// The number of buckets to store our patterns in. We don't want this to be
/// too big in order to avoid wasting memory, but we don't want it to be too
/// small either to avoid spending too much time confirming literals.
///
/// The number of buckets MUST be a power of two. Otherwise, determining the
/// bucket from a hash will slow down the code considerably. Using a power
/// of two means `hash % NUM_BUCKETS` can compile down to a simple `and`
/// instruction.
const NUM_BUCKETS: usize = 64;

/// An implementation of the Rabin-Karp algorithm. The main idea of this
/// algorithm is to maintain a rolling hash as it moves through the input, and
/// then check whether that hash corresponds to the same hash for any of the
/// patterns we're looking for.
///
/// A draw back of naively scaling Rabin-Karp to multiple patterns is that
/// it requires all of the patterns to be the same length, which in turn
/// corresponds to the number of bytes to hash. We adapt this to work for
/// multiple patterns of varying size by fixing the number of bytes to hash
/// to be the length of the smallest pattern. We also split the patterns into
/// several buckets to hopefully make the confirmation step faster.
///
/// Wikipedia has a decent explanation, if a bit heavy on the theory:
/// https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm
///
/// But ESMAJ provides something a bit more concrete:
/// http://www-igm.univ-mlv.fr/~lecroq/string/node5.html
#[derive(Clone, Debug)]
pub struct RabinKarp {
    /// The order of patterns in each bucket is significant. Namely, they are
    /// arranged such that the first one to match is the correct match. This
    /// may not necessarily correspond to the order provided by the caller.
    /// For example, if leftmost-longest semantics are used, then the patterns
    /// are sorted by their length in descending order. If leftmost-first
    /// semantics are used, then the patterns are sorted by their pattern ID
    /// in ascending order (which corresponds to the caller's order).
    buckets: Vec<Vec<(Hash, PatternID)>>,
    /// The length of the hashing window. Generally, this corresponds to the
    /// length of the smallest pattern.
    hash_len: usize,
    /// The factor to subtract out of a hash before updating it with a new
    /// byte.
    hash_2pow: usize,
    /// The maximum identifier of a pattern. This is used as a sanity check
    /// to ensure that the patterns provided by the caller are the same as
    /// the patterns that were used to compile the matcher. This sanity check
    /// possibly permits safely eliminating bounds checks regardless of what
    /// patterns are provided by the caller.
    ///
    /// (Currently, we don't use this to elide bounds checks since it doesn't
    /// result in a measurable performance improvement, but we do use it for
    /// better failure modes.)
    max_pattern_id: PatternID,
}

impl RabinKarp {
    /// Compile a new Rabin-Karp matcher from the patterns given.
    ///
    /// This panics if any of the patterns in the collection are empty, or if
    /// the collection is itself empty.
    pub fn new(patterns: &Patterns) -> RabinKarp {
        assert!(patterns.len() >= 1);
        let hash_len = patterns.minimum_len();
        assert!(hash_len >= 1);

        let mut hash_2pow = 1usize;
        for _ in 1..hash_len {
            hash_2pow = hash_2pow.wrapping_shl(1);
        }

        let mut rk = RabinKarp {
            buckets: vec![vec![]; NUM_BUCKETS],
            hash_len,
            hash_2pow,
            max_pattern_id: patterns.max_pattern_id(),
        };
        for (id, pat) in patterns.iter() {
            let hash = rk.hash(&pat.bytes()[..rk.hash_len]);
            let bucket = hash % NUM_BUCKETS;
            rk.buckets[bucket].push((hash, id));
        }
        rk
    }

    /// Return the first matching pattern in the given haystack, begining the
    /// search at `at`.
    pub fn find_at(
        &self,
        patterns: &Patterns,
        haystack: &[u8],
        mut at: usize,
    ) -> Option<Match> {
        assert_eq!(NUM_BUCKETS, self.buckets.len());
        assert_eq!(
            self.max_pattern_id,
            patterns.max_pattern_id(),
            "Rabin-Karp must be called with same patterns it was built with",
        );

        if at + self.hash_len > haystack.len() {
            return None;
        }
        let mut hash = self.hash(&haystack[at..at + self.hash_len]);
        loop {
            let bucket = &self.buckets[hash % NUM_BUCKETS];
            for &(phash, pid) in bucket {
                if phash == hash {
                    if let Some(c) = self.verify(patterns, pid, haystack, at) {
                        return Some(c);
                    }
                }
            }
            if at + self.hash_len >= haystack.len() {
                return None;
            }
            hash = self.update_hash(
                hash,
                haystack[at],
                haystack[at + self.hash_len],
            );
            at += 1;
        }
    }

    /// Returns the approximate total amount of heap used by this searcher, in
    /// units of bytes.
    pub fn heap_bytes(&self) -> usize {
        let num_patterns = self.max_pattern_id as usize + 1;
        self.buckets.len() * mem::size_of::<Vec<(Hash, PatternID)>>()
            + num_patterns * mem::size_of::<(Hash, PatternID)>()
    }

    /// Verify whether the pattern with the given id matches at
    /// `haystack[at..]`.
    ///
    /// We tag this function as `cold` because it helps improve codegen.
    /// Intuitively, it would seem like inlining it would be better. However,
    /// the only time this is called and a match is not found is when there
    /// there is a hash collision, or when a prefix of a pattern matches but
    /// the entire pattern doesn't match. This is hopefully fairly rare, and
    /// if it does occur a lot, it's going to be slow no matter what we do.
    #[cold]
    fn verify(
        &self,
        patterns: &Patterns,
        id: PatternID,
        haystack: &[u8],
        at: usize,
    ) -> Option<Match> {
        let pat = patterns.get(id);
        if pat.is_prefix(&haystack[at..]) {
            Some(Match::from_span(id as usize, at, at + pat.len()))
        } else {
            None
        }
    }

    /// Hash the given bytes.
    fn hash(&self, bytes: &[u8]) -> Hash {
        assert_eq!(self.hash_len, bytes.len());

        let mut hash = 0usize;
        for &b in bytes {
            hash = hash.wrapping_shl(1).wrapping_add(b as usize);
        }
        hash
    }

    /// Update the hash given based on removing `old_byte` at the beginning
    /// of some byte string, and appending `new_byte` to the end of that same
    /// byte string.
    fn update_hash(&self, prev: Hash, old_byte: u8, new_byte: u8) -> Hash {
        prev.wrapping_sub((old_byte as usize).wrapping_mul(self.hash_2pow))
            .wrapping_shl(1)
            .wrapping_add(new_byte as usize)
    }
}