1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
//! Compute a shortest path using the [IDA* search //! algorithm](https://en.wikipedia.org/wiki/Iterative_deepening_A*). use num_traits::Zero; /// Compute a shortest path using the [IDA* search /// algorithm](https://en.wikipedia.org/wiki/Iterative_deepening_A*). /// /// The shortest path starting from `start` up to a node for which `success` returns `true` is /// computed and returned along with its total cost, in a `Some`. If no path can be found, `None` /// is returned instead. /// /// - `start` is the starting node. /// - `successors` returns a list of successors for a given node, along with the cost for moving /// from the node to the successor. /// - `heuristic` returns an approximation of the cost from a given node to the goal. The /// approximation must not be greater than the real cost, or a wrong shortest path may be returned. /// - `success` checks whether the goal has been reached. It is not a node as some problems require /// a dynamic solution instead of a fixed node. /// /// A node will never be included twice in the path as determined by the `Eq` relationship. /// /// The returned path comprises both the start and end node. /// /// # Example /// /// We will search the shortest path on a chess board to go from (1, 1) to (4, 6) doing only knight /// moves. /// /// The first version uses an explicit type `Pos` on which the required traits are derived. /// /// ``` /// use pathfinding::prelude::{absdiff, idastar}; /// /// #[derive(Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)] /// struct Pos(i32, i32); /// /// impl Pos { /// fn distance(&self, other: &Pos) -> u32 { /// (absdiff(self.0, other.0) + absdiff(self.1, other.1)) as u32 /// } /// /// fn successors(&self) -> Vec<(Pos, u32)> { /// let &Pos(x, y) = self; /// vec![Pos(x+1,y+2), Pos(x+1,y-2), Pos(x-1,y+2), Pos(x-1,y-2), /// Pos(x+2,y+1), Pos(x+2,y-1), Pos(x-2,y+1), Pos(x-2,y-1)] /// .into_iter().map(|p| (p, 1)).collect() /// } /// } /// /// static GOAL: Pos = Pos(4, 6); /// let result = idastar(&Pos(1, 1), |p| p.successors(), |p| p.distance(&GOAL) / 3, /// |p| *p == GOAL); /// assert_eq!(result.expect("no path found").1, 4); /// ``` /// /// The second version does not declare a `Pos` type, makes use of more closures, /// and is thus shorter. /// /// ``` /// use pathfinding::prelude::{absdiff, idastar}; /// /// static GOAL: (i32, i32) = (4, 6); /// let result = idastar(&(1, 1), /// |&(x, y)| vec![(x+1,y+2), (x+1,y-2), (x-1,y+2), (x-1,y-2), /// (x+2,y+1), (x+2,y-1), (x-2,y+1), (x-2,y-1)] /// .into_iter().map(|p| (p, 1)), /// |&(x, y)| (absdiff(x, GOAL.0) + absdiff(y, GOAL.1)) / 3, /// |&p| p == GOAL); /// assert_eq!(result.expect("no path found").1, 4); /// ``` pub fn idastar<N, C, FN, IN, FH, FS>( start: &N, mut successors: FN, mut heuristic: FH, mut success: FS, ) -> Option<(Vec<N>, C)> where N: Eq + Clone, C: Zero + Ord + Copy, FN: FnMut(&N) -> IN, IN: IntoIterator<Item = (N, C)>, FH: FnMut(&N) -> C, FS: FnMut(&N) -> bool, { let mut bound = heuristic(start); let mut path = vec![start.clone()]; loop { match search( &mut path, Zero::zero(), bound, &mut successors, &mut heuristic, &mut success, ) { Path::Found(path, cost) => return Some((path, cost)), Path::Minimum(min) => { if bound == min { return None; } bound = min; } Path::Impossible => return None, } } } enum Path<N, C> { Found(Vec<N>, C), Minimum(C), Impossible, } fn search<N, C, FN, IN, FH, FS>( path: &mut Vec<N>, cost: C, bound: C, successors: &mut FN, heuristic: &mut FH, success: &mut FS, ) -> Path<N, C> where N: Eq + Clone, C: Zero + Ord + Copy, FN: FnMut(&N) -> IN, IN: IntoIterator<Item = (N, C)>, FH: FnMut(&N) -> C, FS: FnMut(&N) -> bool, { let neighbs = { let start = &path[path.len() - 1]; let f = cost + heuristic(start); if f > bound { return Path::Minimum(f); } if success(start) { return Path::Found(path.clone(), f); } let mut neighbs = successors(start) .into_iter() .filter_map(|(n, c)| { if path.contains(&n) { None } else { let h = heuristic(&n); Some((n, c, c + h)) } }) .collect::<Vec<_>>(); neighbs.sort_by_key(|&(_, _, c)| c); neighbs }; let mut min = None; for (node, extra, _) in neighbs { path.push(node); match search(path, cost + extra, bound, successors, heuristic, success) { found @ Path::Found(_, _) => return found, Path::Minimum(m) => match min { None => min = Some(m), Some(n) if m < n => min = Some(m), Some(_) => (), }, Path::Impossible => (), } path.pop(); } match min { Some(m) => Path::Minimum(m), None => Path::Impossible, } }