1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
//! Utilities useful for various generations tasks.

use crate::math::{Point, Vector};
#[cfg(feature = "dim3")]
use crate::utils::{DeterministicState, HashablePartialEq};
#[cfg(feature = "dim3")]
use na;
use na::RealField;
#[cfg(feature = "dim3")]
use num::Zero;
#[cfg(feature = "dim3")]
use std::collections::hash_map::Entry;
#[cfg(feature = "dim3")]
use std::collections::HashMap;
#[cfg(feature = "dim3")]
use std::iter;

// FIXME: remove that in favor of `push_xy_circle` ?
/// Pushes a discretized counterclockwise circle to a buffer.
#[cfg(feature = "dim3")]
#[inline]
pub fn push_circle<N: RealField>(
    radius: N,
    nsubdiv: u32,
    dtheta: N,
    y: N,
    out: &mut Vec<Point<N>>,
) {
    let mut curr_theta = N::zero();

    for _ in 0..nsubdiv {
        out.push(Point::new(
            curr_theta.cos() * radius,
            y.clone(),
            curr_theta.sin() * radius,
        ));
        curr_theta = curr_theta + dtheta;
    }
}

/// Pushes a discretized counterclockwise circle to a buffer.
/// The circle is contained on the plane spanned by the `x` and `y` axis.
#[inline]
pub fn push_xy_arc<N: RealField>(radius: N, nsubdiv: u32, dtheta: N, out: &mut Vec<Point<N>>) {
    let mut curr_theta = N::zero();

    for _ in 0..nsubdiv {
        let mut pt_coords = Vector::zeros();

        pt_coords[0] = curr_theta.cos() * radius;
        pt_coords[1] = curr_theta.sin() * radius;
        out.push(Point::from(pt_coords));

        curr_theta = curr_theta + dtheta;
    }
}

/// Creates the faces from two circles with the same discretization.
#[cfg(feature = "dim3")]
#[inline]
pub fn push_ring_indices(
    base_lower_circle: u32,
    base_upper_circle: u32,
    nsubdiv: u32,
    out: &mut Vec<Point<u32>>,
) {
    push_open_ring_indices(base_lower_circle, base_upper_circle, nsubdiv, out);

    // adjust the last two triangles
    push_rectangle_indices(
        base_upper_circle,
        base_upper_circle + nsubdiv - 1,
        base_lower_circle,
        base_lower_circle + nsubdiv - 1,
        out,
    );
}

/// Creates the faces from two circles with the same discretization.
#[cfg(feature = "dim3")]
#[inline]
pub fn push_open_ring_indices(
    base_lower_circle: u32,
    base_upper_circle: u32,
    nsubdiv: u32,
    out: &mut Vec<Point<u32>>,
) {
    assert!(nsubdiv > 0);

    for i in 0..nsubdiv - 1 {
        let bli = base_lower_circle + i;
        let bui = base_upper_circle + i;
        push_rectangle_indices(bui + 1, bui, bli + 1, bli, out);
    }
}

/// Creates the faces from a circle and a point that is shared by all triangle.
#[cfg(feature = "dim3")]
#[inline]
pub fn push_degenerate_top_ring_indices(
    base_circle: u32,
    point: u32,
    nsubdiv: u32,
    out: &mut Vec<Point<u32>>,
) {
    push_degenerate_open_top_ring_indices(base_circle, point, nsubdiv, out);

    out.push(Point::new(base_circle + nsubdiv - 1, point, base_circle));
}

/// Creates the faces from a circle and a point that is shared by all triangle.
#[cfg(feature = "dim3")]
#[inline]
pub fn push_degenerate_open_top_ring_indices(
    base_circle: u32,
    point: u32,
    nsubdiv: u32,
    out: &mut Vec<Point<u32>>,
) {
    assert!(nsubdiv > 0);

    for i in 0..nsubdiv - 1 {
        out.push(Point::new(base_circle + i, point, base_circle + i + 1));
    }
}

/// Pushes indices so that a circle is filled with triangles. Each triangle will have the
/// `base_circle` point in common.
/// Pushes `nsubdiv - 2` elements to `out`.
#[cfg(feature = "dim3")]
#[inline]
pub fn push_filled_circle_indices(base_circle: u32, nsubdiv: u32, out: &mut Vec<Point<u32>>) {
    for i in base_circle + 1..base_circle + nsubdiv - 1 {
        out.push(Point::new(base_circle, i, i + 1));
    }
}

/// Given four corner points, pushes to two counterclockwise triangles to `out`.
///
/// # Arguments:
/// * `ul` - the up-left point.
/// * `dl` - the down-left point.
/// * `dr` - the down-left point.
/// * `ur` - the up-left point.
#[cfg(feature = "dim3")]
#[inline]
pub fn push_rectangle_indices(ul: u32, ur: u32, dl: u32, dr: u32, out: &mut Vec<Point<u32>>) {
    out.push(Point::new(ul.clone(), dl, dr.clone()));
    out.push(Point::new(dr, ur, ul));
}

/// Reverses the clockwising of a set of faces.
#[cfg(feature = "dim3")]
#[inline]
pub fn reverse_clockwising(indices: &mut [Point<u32>]) {
    for i in indices.iter_mut() {
        i.coords.swap((0, 0), (1, 0));
    }
}

/// Duplicates the indices of each triangle on the given index buffer.
///
/// For example: [ (0.0, 1.0, 2.0) ] becomes: [ (0.0, 0.0, 0.0), (1.0, 1.0, 1.0), (2.0, 2.0, 2.0)].
#[cfg(feature = "dim3")]
#[inline]
pub fn split_index_buffer(indices: &[Point<u32>]) -> Vec<Point<Point<u32>>> {
    let mut resi = Vec::new();

    for vertex in indices.iter() {
        resi.push(Point::new(
            Point::new(vertex.x, vertex.x, vertex.x),
            Point::new(vertex.y, vertex.y, vertex.y),
            Point::new(vertex.z, vertex.z, vertex.z),
        ));
    }

    resi
}

/// Duplicates the indices of each triangle on the given index buffer, giving the same id to each
/// identical vertex.
#[cfg(feature = "dim3")]
#[inline]
pub fn split_index_buffer_and_recover_topology<N: RealField>(
    indices: &[Point<u32>],
    coords: &[Point<N>],
) -> (Vec<Point<Point<u32>>>, Vec<Point<N>>) {
    let mut vtx_to_id = HashMap::with_hasher(DeterministicState::new());
    let mut new_coords = Vec::with_capacity(coords.len());
    let mut out = Vec::with_capacity(indices.len());

    fn resolve_coord_id<N: RealField>(
        coord: &Point<N>,
        vtx_to_id: &mut HashMap<HashablePartialEq<Point<N>>, u32, DeterministicState>,
        new_coords: &mut Vec<Point<N>>,
    ) -> u32 {
        let key = unsafe { HashablePartialEq::new(coord.clone()) };
        let id = match vtx_to_id.entry(key) {
            Entry::Occupied(entry) => entry.into_mut(),
            Entry::Vacant(entry) => entry.insert(new_coords.len() as u32),
        };

        if *id == new_coords.len() as u32 {
            new_coords.push(coord.clone());
        }

        *id
    }

    for t in indices.iter() {
        let va = resolve_coord_id(&coords[t.x as usize], &mut vtx_to_id, &mut new_coords);
        let oa = t.x;

        let vb = resolve_coord_id(&coords[t.y as usize], &mut vtx_to_id, &mut new_coords);
        let ob = t.y;

        let vc = resolve_coord_id(&coords[t.z as usize], &mut vtx_to_id, &mut new_coords);
        let oc = t.z;

        out.push(Point::new(
            Point::new(va, oa, oa),
            Point::new(vb, ob, ob),
            Point::new(vc, oc, oc),
        ));
    }

    new_coords.shrink_to_fit();

    (out, new_coords)
}

// FIXME: check at compile-time that we are in 3D?
/// Computes the normals of a set of vertices.
#[cfg(feature = "dim3")]
#[inline]
pub fn compute_normals<N: RealField>(
    coordinates: &[Point<N>],
    faces: &[Point<u32>],
    normals: &mut Vec<Vector<N>>,
) {
    let mut divisor: Vec<N> = iter::repeat(na::zero()).take(coordinates.len()).collect();

    // Shrink the output buffer if it is too big.
    if normals.len() > coordinates.len() {
        normals.truncate(coordinates.len())
    }

    // Reinit all normals to zero.
    normals.clear();
    normals.extend(iter::repeat(na::zero::<Vector<N>>()).take(coordinates.len()));

    // Accumulate normals ...
    for f in faces.iter() {
        let edge1 = coordinates[f.y as usize] - coordinates[f.x as usize];
        let edge2 = coordinates[f.z as usize] - coordinates[f.x as usize];
        let cross = edge1.cross(&edge2);
        let normal;

        if !cross.is_zero() {
            normal = cross.normalize()
        } else {
            normal = cross
        }

        normals[f.x as usize] = normals[f.x as usize] + normal;
        normals[f.y as usize] = normals[f.y as usize] + normal;
        normals[f.z as usize] = normals[f.z as usize] + normal;

        divisor[f.x as usize] = divisor[f.x as usize] + na::one();
        divisor[f.y as usize] = divisor[f.y as usize] + na::one();
        divisor[f.z as usize] = divisor[f.z as usize] + na::one();
    }

    // ... and compute the mean
    for (n, divisor) in normals.iter_mut().zip(divisor.iter()) {
        *n = *n / *divisor
    }
}