Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/*!
A lower level API for packed multiple substring search, principally for a small
number of patterns.

This sub-module provides vectorized routines for quickly finding matches of a
small number of patterns. In general, users of this crate shouldn't need to
interface with this module directory, as the primary
[`AhoCorasick`](../struct.AhoCorasick.html)
searcher will use these routines automatically as a prefilter when applicable.
However, in some cases, callers may want to bypass the Aho-Corasick machinery
entirely and use this vectorized searcher directly.

# Overview

The primary types in this sub-module are:

* [`Searcher`](struct.Searcher.html) executes the actual search algorithm to
  report matches in a haystack.
* [`Builder`](struct.Builder.html) accumulates patterns incrementally and can
  construct a `Searcher`.
* [`Config`](struct.Config.html) permits tuning the searcher, and itself will
  produce a `Builder` (which can then be used to build a `Searcher`).
  Currently, the only tuneable knob are the match semantics, but this may be
  expanded in the future.

# Examples

This example shows how to create a searcher from an iterator of patterns.
By default, leftmost-first match semantics are used. (See the top-level
[`MatchKind`](../enum.MatchKind.html) type for more details about match
semantics, which apply similarly to packed substring search.)

```
use aho_corasick::packed::{MatchKind, Searcher};

# fn example() -> Option<()> {
let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
let matches: Vec<usize> = searcher
    .find_iter("foobar")
    .map(|mat| mat.pattern())
    .collect();
assert_eq!(vec![0], matches);
# Some(()) }
# if cfg!(target_arch = "x86_64") {
#     example().unwrap()
# } else {
#     assert!(example().is_none());
# }
```

This example shows how to use [`Config`](struct.Config.html) to change the
match semantics to leftmost-longest:

```
use aho_corasick::packed::{Config, MatchKind};

# fn example() -> Option<()> {
let searcher = Config::new()
    .match_kind(MatchKind::LeftmostLongest)
    .builder()
    .add("foo")
    .add("foobar")
    .build()?;
let matches: Vec<usize> = searcher
    .find_iter("foobar")
    .map(|mat| mat.pattern())
    .collect();
assert_eq!(vec![1], matches);
# Some(()) }
# if cfg!(target_arch = "x86_64") {
#     example().unwrap()
# } else {
#     assert!(example().is_none());
# }
```

# Packed substring searching

Packed substring searching refers to the use of SIMD (Single Instruction,
Multiple Data) to accelerate the detection of matches in a haystack. Unlike
conventional algorithms, such as Aho-Corasick, SIMD algorithms for substring
search tend to do better with a small number of patterns, where as Aho-Corasick
generally maintains reasonably consistent performance regardless of the number
of patterns you give it. Because of this, the vectorized searcher in this
sub-module cannot be used as a general purpose searcher, since building the
searcher may fail. However, in exchange, when searching for a small number of
patterns, searching can be quite a bit faster than Aho-Corasick (sometimes by
an order of magnitude).

The key take away here is that constructing a searcher from a list of patterns
is a fallible operation. While the precise conditions under which building a
searcher can fail is specifically an implementation detail, here are some
common reasons:

* Too many patterns were given. Typically, the limit is on the order of 100 or
  so, but this limit may fluctuate based on available CPU features.
* The available packed algorithms require CPU features that aren't available.
  For example, currently, this crate only provides packed algorithms for
  `x86_64`. Therefore, constructing a packed searcher on any other target
  (e.g., ARM) will always fail.
* Zero patterns were given, or one of the patterns given was empty. Packed
  searchers require at least one pattern and that all patterns are non-empty.
* Something else about the nature of the patterns (typically based on
  heuristics) suggests that a packed searcher would perform very poorly, so
  no searcher is built.
*/

pub use packed::api::{Builder, Config, FindIter, MatchKind, Searcher};

mod api;
mod pattern;
mod rabinkarp;
mod teddy;
#[cfg(test)]
mod tests;
#[cfg(target_arch = "x86_64")]
mod vector;