Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
//! Traits and types used for tracking the usage of generic parameters through a proc-macro input.
//!
//! When generating trait impls, libraries often want to automatically figure out which type parameters
//! are used in which fields, and then emit bounds that will produce the most permissive compilable
//! code.
//!
//! # Usage
//!
//! ## Example 1: Filtering
//! This example accepts a proc-macro input, then finds all lifetimes and type parameters used
//! by private fields.
//!
//! ```rust
//! # extern crate darling_core;
//! # extern crate syn;
//! #
//! # // in real-world usage, import from `darling`
//! # use darling_core::usage::{self, CollectLifetimes, CollectTypeParams, GenericsExt, Purpose};
//! # use syn::{Data, DeriveInput, GenericParam, Generics, Visibility};
//! #
//! # #[allow(dead_code)]
//! fn process(input: &DeriveInput) -> Generics {
//!     let type_params = input.generics.declared_type_params();
//!     let lifetimes = input.generics.declared_lifetimes();
//!
//!     let mut ret_generics = input.generics.clone();
//!
//!     if let Data::Struct(ref body) = input.data {
//!         let internal_fields = body
//!             .fields
//!             .iter()
//!             .filter(|field| field.vis == Visibility::Inherited)
//!             .collect::<Vec<_>>();
//!
//!         let int_type_params = internal_fields
//!             .collect_type_params(&Purpose::BoundImpl.into(), &type_params);
//!
//!         // We could reuse the vec from above, but here we'll instead
//!         // directly consume the chained iterator.
//!         let int_lifetimes = body
//!             .fields
//!             .iter()
//!             .filter(|field| field.vis == Visibility::Inherited)
//!             .collect_lifetimes(&Purpose::BoundImpl.into(), &lifetimes);
//!
//!
//!         ret_generics.params = ret_generics
//!             .params
//!             .into_iter()
//!             .filter(|gp| {
//!                 match *gp {
//!                     GenericParam::Type(ref ty) => int_type_params.contains(&ty.ident),
//!                     GenericParam::Lifetime(ref lt) => int_lifetimes.contains(&lt.lifetime),
//!                     _ => true,
//!                 }
//!             })
//!             .collect();
//!     }
//!
//!     ret_generics
//! }
//!
//! # fn main() {}
//! ```
//!
//! ## Example 2: Integrating with `FromDeriveInput`
//! It is possible to use `darling`'s magic fields feature in tandem with the `usage` feature set.
//! While there is no custom derive for `UsesTypeParams` or `UsesLifetimes`, there are macros to
//! generate impls.
//!
//! ```rust,ignore
//! #![allow(dead_code)]
//!
//! #[derive(FromField)]
//! #[darling(attributes(speak))]
//! struct SpeakerField {
//!     ident: Option<syn::Ident>,
//!     ty: syn::Type,
//!     #[darling(default)]
//!     volume: Option<u32>,
//! }
//!
//! uses_type_params!(SpeakerField, ty);
//! uses_lifetimes!(SpeakerField, ty);
//!
//! #[derive(FromDeriveInput)]
//! struct SpeakerOptions {
//!     generics: syn::Generics,
//!     data: darling::ast::Data<darling::util::Ignored, SpeakerField>,
//! }
//! ```
//!
//! At this point, you are able to call `uses_type_params` on `SpeakerOptions.data`, or any filtered
//! view of it. `darling` internally uses this in conjunction with the `skip` meta-item to determine
//! which type parameters don't require the `FromMeta` bound in generated impls.
//!
//! **Note:** If you are performing operations referencing generic params in meta-items parsed by `darling`,
//! you should determine if those impact the emitted code and wire up `UsesTypeParams` accordingly for
//! your field/variant.

mod generics_ext;
mod ident_set;
mod lifetimes;
mod options;
mod type_params;

pub use self::generics_ext::GenericsExt;
pub use self::ident_set::{IdentRefSet, IdentSet};
pub use self::lifetimes::{CollectLifetimes, LifetimeRefSet, LifetimeSet, UsesLifetimes};
pub use self::options::{Options, Purpose};
pub use self::type_params::{CollectTypeParams, UsesTypeParams};