1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
use core::fmt; use core::ops::{Deref, DerefMut}; /// Pads and aligns a value to the length of a cache line. /// /// In concurrent programming, sometimes it is desirable to make sure commonly accessed pieces of /// data are not placed into the same cache line. Updating an atomic value invalidates the whole /// cache line it belongs to, which makes the next access to the same cache line slower for other /// CPU cores. Use `CachePadded` to ensure updating one piece of data doesn't invalidate other /// cached data. /// /// # Size and alignment /// /// Cache lines are assumed to be N bytes long, depending on the architecture: /// /// * On x86-64 and aarch64, N = 128. /// * On all others, N = 64. /// /// Note that N is just a reasonable guess and is not guaranteed to match the actual cache line /// length of the machine the program is running on. On modern Intel architectures, spatial /// prefetcher is pulling pairs of 64-byte cache lines at a time, so we pessimistically assume that /// cache lines are 128 bytes long. /// /// The size of `CachePadded<T>` is the smallest multiple of N bytes large enough to accommodate /// a value of type `T`. /// /// The alignment of `CachePadded<T>` is the maximum of N bytes and the alignment of `T`. /// /// # Examples /// /// Alignment and padding: /// /// ``` /// use crossbeam_utils::CachePadded; /// /// let array = [CachePadded::new(1i8), CachePadded::new(2i8)]; /// let addr1 = &*array[0] as *const i8 as usize; /// let addr2 = &*array[1] as *const i8 as usize; /// /// assert!(addr2 - addr1 >= 64); /// assert_eq!(addr1 % 64, 0); /// assert_eq!(addr2 % 64, 0); /// ``` /// /// When building a concurrent queue with a head and a tail index, it is wise to place them in /// different cache lines so that concurrent threads pushing and popping elements don't invalidate /// each other's cache lines: /// /// ``` /// use crossbeam_utils::CachePadded; /// use std::sync::atomic::AtomicUsize; /// /// struct Queue<T> { /// head: CachePadded<AtomicUsize>, /// tail: CachePadded<AtomicUsize>, /// buffer: *mut T, /// } /// ``` #[derive(Clone, Copy, Default, Hash, PartialEq, Eq)] // Starting from Intel's Sandy Bridge, spatial prefetcher is now pulling pairs of 64-byte cache // lines at a time, so we have to align to 128 bytes rather than 64. // // Sources: // - https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf // - https://github.com/facebook/folly/blob/1b5288e6eea6df074758f877c849b6e73bbb9fbb/folly/lang/Align.h#L107 // // ARM's big.LITTLE architecture has asymmetric cores and "big" cores have 128 byte cache line size // Sources: // - https://www.mono-project.com/news/2016/09/12/arm64-icache/ // #[cfg_attr(any(target_arch = "x86_64", target_arch = "aarch64"), repr(align(128)))] #[cfg_attr( not(any(target_arch = "x86_64", target_arch = "aarch64")), repr(align(64)) )] pub struct CachePadded<T> { value: T, } unsafe impl<T: Send> Send for CachePadded<T> {} unsafe impl<T: Sync> Sync for CachePadded<T> {} impl<T> CachePadded<T> { /// Pads and aligns a value to the length of a cache line. /// /// # Examples /// /// ``` /// use crossbeam_utils::CachePadded; /// /// let padded_value = CachePadded::new(1); /// ``` pub const fn new(t: T) -> CachePadded<T> { CachePadded::<T> { value: t } } /// Returns the inner value. /// /// # Examples /// /// ``` /// use crossbeam_utils::CachePadded; /// /// let padded_value = CachePadded::new(7); /// let value = padded_value.into_inner(); /// assert_eq!(value, 7); /// ``` pub fn into_inner(self) -> T { self.value } } impl<T> Deref for CachePadded<T> { type Target = T; fn deref(&self) -> &T { &self.value } } impl<T> DerefMut for CachePadded<T> { fn deref_mut(&mut self) -> &mut T { &mut self.value } } impl<T: fmt::Debug> fmt::Debug for CachePadded<T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("CachePadded") .field("value", &self.value) .finish() } } impl<T> From<T> for CachePadded<T> { fn from(t: T) -> Self { CachePadded::new(t) } }