1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
/*
 * This file provides:
 *
 * NOTE: Work in progress https://github.com/dimforge/nalgebra/issues/487
 *
 * (Dual Quaternion)
 *
 * Index<usize>
 * IndexMut<usize>
 *
 * (Assignment Operators)
 *
 * DualQuaternion × Scalar
 * DualQuaternion × DualQuaternion
 * DualQuaternion + DualQuaternion
 * DualQuaternion - DualQuaternion
 *
 * ---
 *
 * References:
 *   Multiplication:
 *   - https://cs.gmu.edu/~jmlien/teaching/cs451/uploads/Main/dual-quaternion.pdf
 */

use crate::{DualQuaternion, SimdRealField};
use std::mem;
use std::ops::{Add, Index, IndexMut, Mul, Sub};

impl<N: SimdRealField> AsRef<[N; 8]> for DualQuaternion<N> {
    #[inline]
    fn as_ref(&self) -> &[N; 8] {
        unsafe { mem::transmute(self) }
    }
}

impl<N: SimdRealField> AsMut<[N; 8]> for DualQuaternion<N> {
    #[inline]
    fn as_mut(&mut self) -> &mut [N; 8] {
        unsafe { mem::transmute(self) }
    }
}

impl<N: SimdRealField> Index<usize> for DualQuaternion<N> {
    type Output = N;

    #[inline]
    fn index(&self, i: usize) -> &Self::Output {
        &self.as_ref()[i]
    }
}

impl<N: SimdRealField> IndexMut<usize> for DualQuaternion<N> {
    #[inline]
    fn index_mut(&mut self, i: usize) -> &mut N {
        &mut self.as_mut()[i]
    }
}

impl<N: SimdRealField> Mul<DualQuaternion<N>> for DualQuaternion<N>
where
    N::Element: SimdRealField,
{
    type Output = DualQuaternion<N>;

    fn mul(self, rhs: Self) -> Self::Output {
        Self::from_real_and_dual(
            self.real * rhs.real,
            self.real * rhs.dual + self.dual * rhs.real,
        )
    }
}

impl<N: SimdRealField> Mul<N> for DualQuaternion<N>
where
    N::Element: SimdRealField,
{
    type Output = DualQuaternion<N>;

    fn mul(self, rhs: N) -> Self::Output {
        Self::from_real_and_dual(self.real * rhs, self.dual * rhs)
    }
}

impl<N: SimdRealField> Add<DualQuaternion<N>> for DualQuaternion<N>
where
    N::Element: SimdRealField,
{
    type Output = DualQuaternion<N>;

    fn add(self, rhs: DualQuaternion<N>) -> Self::Output {
        Self::from_real_and_dual(self.real + rhs.real, self.dual + rhs.dual)
    }
}

impl<N: SimdRealField> Sub<DualQuaternion<N>> for DualQuaternion<N>
where
    N::Element: SimdRealField,
{
    type Output = DualQuaternion<N>;

    fn sub(self, rhs: DualQuaternion<N>) -> Self::Output {
        Self::from_real_and_dual(self.real - rhs.real, self.dual - rhs.dual)
    }
}