Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
use alloc::boxed::Box;
use core::cell::UnsafeCell;
use core::fmt;
use core::marker::PhantomData;
use core::mem::MaybeUninit;
use core::ptr;
use core::sync::atomic::{self, AtomicPtr, AtomicUsize, Ordering};

use crossbeam_utils::{Backoff, CachePadded};

// Bits indicating the state of a slot:
// * If a value has been written into the slot, `WRITE` is set.
// * If a value has been read from the slot, `READ` is set.
// * If the block is being destroyed, `DESTROY` is set.
const WRITE: usize = 1;
const READ: usize = 2;
const DESTROY: usize = 4;

// Each block covers one "lap" of indices.
const LAP: usize = 32;
// The maximum number of values a block can hold.
const BLOCK_CAP: usize = LAP - 1;
// How many lower bits are reserved for metadata.
const SHIFT: usize = 1;
// Indicates that the block is not the last one.
const HAS_NEXT: usize = 1;

/// A slot in a block.
struct Slot<T> {
    /// The value.
    value: UnsafeCell<MaybeUninit<T>>,

    /// The state of the slot.
    state: AtomicUsize,
}

impl<T> Slot<T> {
    /// Waits until a value is written into the slot.
    fn wait_write(&self) {
        let backoff = Backoff::new();
        while self.state.load(Ordering::Acquire) & WRITE == 0 {
            backoff.snooze();
        }
    }
}

/// A block in a linked list.
///
/// Each block in the list can hold up to `BLOCK_CAP` values.
struct Block<T> {
    /// The next block in the linked list.
    next: AtomicPtr<Block<T>>,

    /// Slots for values.
    slots: [Slot<T>; BLOCK_CAP],
}

impl<T> Block<T> {
    /// Creates an empty block that starts at `start_index`.
    fn new() -> Block<T> {
        // SAFETY: This is safe because:
        //  [1] `Block::next` (AtomicPtr) may be safely zero initialized.
        //  [2] `Block::slots` (Array) may be safely zero initialized because of [3, 4].
        //  [3] `Slot::value` (UnsafeCell) may be safely zero initialized because it
        //       holds a MaybeUninit.
        //  [4] `Slot::state` (AtomicUsize) may be safely zero initialized.
        unsafe { MaybeUninit::zeroed().assume_init() }
    }

    /// Waits until the next pointer is set.
    fn wait_next(&self) -> *mut Block<T> {
        let backoff = Backoff::new();
        loop {
            let next = self.next.load(Ordering::Acquire);
            if !next.is_null() {
                return next;
            }
            backoff.snooze();
        }
    }

    /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block.
    unsafe fn destroy(this: *mut Block<T>, start: usize) {
        // It is not necessary to set the `DESTROY` bit in the last slot because that slot has
        // begun destruction of the block.
        for i in start..BLOCK_CAP - 1 {
            let slot = (*this).slots.get_unchecked(i);

            // Mark the `DESTROY` bit if a thread is still using the slot.
            if slot.state.load(Ordering::Acquire) & READ == 0
                && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0
            {
                // If a thread is still using the slot, it will continue destruction of the block.
                return;
            }
        }

        // No thread is using the block, now it is safe to destroy it.
        drop(Box::from_raw(this));
    }
}

/// A position in a queue.
struct Position<T> {
    /// The index in the queue.
    index: AtomicUsize,

    /// The block in the linked list.
    block: AtomicPtr<Block<T>>,
}

/// An unbounded multi-producer multi-consumer queue.
///
/// This queue is implemented as a linked list of segments, where each segment is a small buffer
/// that can hold a handful of elements. There is no limit to how many elements can be in the queue
/// at a time. However, since segments need to be dynamically allocated as elements get pushed,
/// this queue is somewhat slower than [`ArrayQueue`].
///
/// [`ArrayQueue`]: super::ArrayQueue
///
/// # Examples
///
/// ```
/// use crossbeam_queue::SegQueue;
///
/// let q = SegQueue::new();
///
/// q.push('a');
/// q.push('b');
///
/// assert_eq!(q.pop(), Some('a'));
/// assert_eq!(q.pop(), Some('b'));
/// assert!(q.pop().is_none());
/// ```
pub struct SegQueue<T> {
    /// The head of the queue.
    head: CachePadded<Position<T>>,

    /// The tail of the queue.
    tail: CachePadded<Position<T>>,

    /// Indicates that dropping a `SegQueue<T>` may drop values of type `T`.
    _marker: PhantomData<T>,
}

unsafe impl<T: Send> Send for SegQueue<T> {}
unsafe impl<T: Send> Sync for SegQueue<T> {}

impl<T> SegQueue<T> {
    /// Creates a new unbounded queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_queue::SegQueue;
    ///
    /// let q = SegQueue::<i32>::new();
    /// ```
    pub const fn new() -> SegQueue<T> {
        SegQueue {
            head: CachePadded::new(Position {
                block: AtomicPtr::new(ptr::null_mut()),
                index: AtomicUsize::new(0),
            }),
            tail: CachePadded::new(Position {
                block: AtomicPtr::new(ptr::null_mut()),
                index: AtomicUsize::new(0),
            }),
            _marker: PhantomData,
        }
    }

    /// Pushes an element into the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_queue::SegQueue;
    ///
    /// let q = SegQueue::new();
    ///
    /// q.push(10);
    /// q.push(20);
    /// ```
    pub fn push(&self, value: T) {
        let backoff = Backoff::new();
        let mut tail = self.tail.index.load(Ordering::Acquire);
        let mut block = self.tail.block.load(Ordering::Acquire);
        let mut next_block = None;

        loop {
            // Calculate the offset of the index into the block.
            let offset = (tail >> SHIFT) % LAP;

            // If we reached the end of the block, wait until the next one is installed.
            if offset == BLOCK_CAP {
                backoff.snooze();
                tail = self.tail.index.load(Ordering::Acquire);
                block = self.tail.block.load(Ordering::Acquire);
                continue;
            }

            // If we're going to have to install the next block, allocate it in advance in order to
            // make the wait for other threads as short as possible.
            if offset + 1 == BLOCK_CAP && next_block.is_none() {
                next_block = Some(Box::new(Block::<T>::new()));
            }

            // If this is the first push operation, we need to allocate the first block.
            if block.is_null() {
                let new = Box::into_raw(Box::new(Block::<T>::new()));

                if self
                    .tail
                    .block
                    .compare_and_swap(block, new, Ordering::Release)
                    == block
                {
                    self.head.block.store(new, Ordering::Release);
                    block = new;
                } else {
                    next_block = unsafe { Some(Box::from_raw(new)) };
                    tail = self.tail.index.load(Ordering::Acquire);
                    block = self.tail.block.load(Ordering::Acquire);
                    continue;
                }
            }

            let new_tail = tail + (1 << SHIFT);

            // Try advancing the tail forward.
            match self.tail.index.compare_exchange_weak(
                tail,
                new_tail,
                Ordering::SeqCst,
                Ordering::Acquire,
            ) {
                Ok(_) => unsafe {
                    // If we've reached the end of the block, install the next one.
                    if offset + 1 == BLOCK_CAP {
                        let next_block = Box::into_raw(next_block.unwrap());
                        let next_index = new_tail.wrapping_add(1 << SHIFT);

                        self.tail.block.store(next_block, Ordering::Release);
                        self.tail.index.store(next_index, Ordering::Release);
                        (*block).next.store(next_block, Ordering::Release);
                    }

                    // Write the value into the slot.
                    let slot = (*block).slots.get_unchecked(offset);
                    slot.value.get().write(MaybeUninit::new(value));
                    slot.state.fetch_or(WRITE, Ordering::Release);

                    return;
                },
                Err(t) => {
                    tail = t;
                    block = self.tail.block.load(Ordering::Acquire);
                    backoff.spin();
                }
            }
        }
    }

    /// Pops an element from the queue.
    ///
    /// If the queue is empty, `None` is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_queue::SegQueue;
    ///
    /// let q = SegQueue::new();
    ///
    /// q.push(10);
    /// assert_eq!(q.pop(), Some(10));
    /// assert!(q.pop().is_none());
    /// ```
    pub fn pop(&self) -> Option<T> {
        let backoff = Backoff::new();
        let mut head = self.head.index.load(Ordering::Acquire);
        let mut block = self.head.block.load(Ordering::Acquire);

        loop {
            // Calculate the offset of the index into the block.
            let offset = (head >> SHIFT) % LAP;

            // If we reached the end of the block, wait until the next one is installed.
            if offset == BLOCK_CAP {
                backoff.snooze();
                head = self.head.index.load(Ordering::Acquire);
                block = self.head.block.load(Ordering::Acquire);
                continue;
            }

            let mut new_head = head + (1 << SHIFT);

            if new_head & HAS_NEXT == 0 {
                atomic::fence(Ordering::SeqCst);
                let tail = self.tail.index.load(Ordering::Relaxed);

                // If the tail equals the head, that means the queue is empty.
                if head >> SHIFT == tail >> SHIFT {
                    return None;
                }

                // If head and tail are not in the same block, set `HAS_NEXT` in head.
                if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
                    new_head |= HAS_NEXT;
                }
            }

            // The block can be null here only if the first push operation is in progress. In that
            // case, just wait until it gets initialized.
            if block.is_null() {
                backoff.snooze();
                head = self.head.index.load(Ordering::Acquire);
                block = self.head.block.load(Ordering::Acquire);
                continue;
            }

            // Try moving the head index forward.
            match self.head.index.compare_exchange_weak(
                head,
                new_head,
                Ordering::SeqCst,
                Ordering::Acquire,
            ) {
                Ok(_) => unsafe {
                    // If we've reached the end of the block, move to the next one.
                    if offset + 1 == BLOCK_CAP {
                        let next = (*block).wait_next();
                        let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
                        if !(*next).next.load(Ordering::Relaxed).is_null() {
                            next_index |= HAS_NEXT;
                        }

                        self.head.block.store(next, Ordering::Release);
                        self.head.index.store(next_index, Ordering::Release);
                    }

                    // Read the value.
                    let slot = (*block).slots.get_unchecked(offset);
                    slot.wait_write();
                    let value = slot.value.get().read().assume_init();

                    // Destroy the block if we've reached the end, or if another thread wanted to
                    // destroy but couldn't because we were busy reading from the slot.
                    if offset + 1 == BLOCK_CAP {
                        Block::destroy(block, 0);
                    } else if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
                        Block::destroy(block, offset + 1);
                    }

                    return Some(value);
                },
                Err(h) => {
                    head = h;
                    block = self.head.block.load(Ordering::Acquire);
                    backoff.spin();
                }
            }
        }
    }

    /// Returns `true` if the queue is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_queue::SegQueue;
    ///
    /// let q = SegQueue::new();
    ///
    /// assert!(q.is_empty());
    /// q.push(1);
    /// assert!(!q.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        let head = self.head.index.load(Ordering::SeqCst);
        let tail = self.tail.index.load(Ordering::SeqCst);
        head >> SHIFT == tail >> SHIFT
    }

    /// Returns the number of elements in the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_queue::SegQueue;
    ///
    /// let q = SegQueue::new();
    /// assert_eq!(q.len(), 0);
    ///
    /// q.push(10);
    /// assert_eq!(q.len(), 1);
    ///
    /// q.push(20);
    /// assert_eq!(q.len(), 2);
    /// ```
    pub fn len(&self) -> usize {
        loop {
            // Load the tail index, then load the head index.
            let mut tail = self.tail.index.load(Ordering::SeqCst);
            let mut head = self.head.index.load(Ordering::SeqCst);

            // If the tail index didn't change, we've got consistent indices to work with.
            if self.tail.index.load(Ordering::SeqCst) == tail {
                // Erase the lower bits.
                tail &= !((1 << SHIFT) - 1);
                head &= !((1 << SHIFT) - 1);

                // Fix up indices if they fall onto block ends.
                if (tail >> SHIFT) & (LAP - 1) == LAP - 1 {
                    tail = tail.wrapping_add(1 << SHIFT);
                }
                if (head >> SHIFT) & (LAP - 1) == LAP - 1 {
                    head = head.wrapping_add(1 << SHIFT);
                }

                // Rotate indices so that head falls into the first block.
                let lap = (head >> SHIFT) / LAP;
                tail = tail.wrapping_sub((lap * LAP) << SHIFT);
                head = head.wrapping_sub((lap * LAP) << SHIFT);

                // Remove the lower bits.
                tail >>= SHIFT;
                head >>= SHIFT;

                // Return the difference minus the number of blocks between tail and head.
                return tail - head - tail / LAP;
            }
        }
    }
}

impl<T> Drop for SegQueue<T> {
    fn drop(&mut self) {
        let mut head = self.head.index.load(Ordering::Relaxed);
        let mut tail = self.tail.index.load(Ordering::Relaxed);
        let mut block = self.head.block.load(Ordering::Relaxed);

        // Erase the lower bits.
        head &= !((1 << SHIFT) - 1);
        tail &= !((1 << SHIFT) - 1);

        unsafe {
            // Drop all values between `head` and `tail` and deallocate the heap-allocated blocks.
            while head != tail {
                let offset = (head >> SHIFT) % LAP;

                if offset < BLOCK_CAP {
                    // Drop the value in the slot.
                    let slot = (*block).slots.get_unchecked(offset);
                    let p = &mut *slot.value.get();
                    p.as_mut_ptr().drop_in_place();
                } else {
                    // Deallocate the block and move to the next one.
                    let next = (*block).next.load(Ordering::Relaxed);
                    drop(Box::from_raw(block));
                    block = next;
                }

                head = head.wrapping_add(1 << SHIFT);
            }

            // Deallocate the last remaining block.
            if !block.is_null() {
                drop(Box::from_raw(block));
            }
        }
    }
}

impl<T> fmt::Debug for SegQueue<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("SegQueue { .. }")
    }
}

impl<T> Default for SegQueue<T> {
    fn default() -> SegQueue<T> {
        SegQueue::new()
    }
}