Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
use crate::latch::Latch;
use crate::unwind;
use crossbeam_deque::{Injector, Steal};
use std::any::Any;
use std::cell::UnsafeCell;
use std::mem;

pub(super) enum JobResult<T> {
    None,
    Ok(T),
    Panic(Box<dyn Any + Send>),
}

/// A `Job` is used to advertise work for other threads that they may
/// want to steal. In accordance with time honored tradition, jobs are
/// arranged in a deque, so that thieves can take from the top of the
/// deque while the main worker manages the bottom of the deque. This
/// deque is managed by the `thread_pool` module.
pub(super) trait Job {
    /// Unsafe: this may be called from a different thread than the one
    /// which scheduled the job, so the implementer must ensure the
    /// appropriate traits are met, whether `Send`, `Sync`, or both.
    unsafe fn execute(this: *const Self);
}

/// Effectively a Job trait object. Each JobRef **must** be executed
/// exactly once, or else data may leak.
///
/// Internally, we store the job's data in a `*const ()` pointer.  The
/// true type is something like `*const StackJob<...>`, but we hide
/// it. We also carry the "execute fn" from the `Job` trait.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(super) struct JobRef {
    pointer: *const (),
    execute_fn: unsafe fn(*const ()),
}

unsafe impl Send for JobRef {}
unsafe impl Sync for JobRef {}

impl JobRef {
    /// Unsafe: caller asserts that `data` will remain valid until the
    /// job is executed.
    pub(super) unsafe fn new<T>(data: *const T) -> JobRef
    where
        T: Job,
    {
        let fn_ptr: unsafe fn(*const T) = <T as Job>::execute;

        // erase types:
        JobRef {
            pointer: data as *const (),
            execute_fn: mem::transmute(fn_ptr),
        }
    }

    #[inline]
    pub(super) unsafe fn execute(&self) {
        (self.execute_fn)(self.pointer)
    }
}

/// A job that will be owned by a stack slot. This means that when it
/// executes it need not free any heap data, the cleanup occurs when
/// the stack frame is later popped.  The function parameter indicates
/// `true` if the job was stolen -- executed on a different thread.
pub(super) struct StackJob<L, F, R>
where
    L: Latch + Sync,
    F: FnOnce(bool) -> R + Send,
    R: Send,
{
    pub(super) latch: L,
    func: UnsafeCell<Option<F>>,
    result: UnsafeCell<JobResult<R>>,
}

impl<L, F, R> StackJob<L, F, R>
where
    L: Latch + Sync,
    F: FnOnce(bool) -> R + Send,
    R: Send,
{
    pub(super) fn new(func: F, latch: L) -> StackJob<L, F, R> {
        StackJob {
            latch,
            func: UnsafeCell::new(Some(func)),
            result: UnsafeCell::new(JobResult::None),
        }
    }

    pub(super) unsafe fn as_job_ref(&self) -> JobRef {
        JobRef::new(self)
    }

    pub(super) unsafe fn run_inline(self, stolen: bool) -> R {
        self.func.into_inner().unwrap()(stolen)
    }

    pub(super) unsafe fn into_result(self) -> R {
        self.result.into_inner().into_return_value()
    }
}

impl<L, F, R> Job for StackJob<L, F, R>
where
    L: Latch + Sync,
    F: FnOnce(bool) -> R + Send,
    R: Send,
{
    unsafe fn execute(this: *const Self) {
        fn call<R>(func: impl FnOnce(bool) -> R) -> impl FnOnce() -> R {
            move || func(true)
        }

        let this = &*this;
        let abort = unwind::AbortIfPanic;
        let func = (*this.func.get()).take().unwrap();
        (*this.result.get()) = match unwind::halt_unwinding(call(func)) {
            Ok(x) => JobResult::Ok(x),
            Err(x) => JobResult::Panic(x),
        };
        this.latch.set();
        mem::forget(abort);
    }
}

/// Represents a job stored in the heap. Used to implement
/// `scope`. Unlike `StackJob`, when executed, `HeapJob` simply
/// invokes a closure, which then triggers the appropriate logic to
/// signal that the job executed.
///
/// (Probably `StackJob` should be refactored in a similar fashion.)
pub(super) struct HeapJob<BODY>
where
    BODY: FnOnce() + Send,
{
    job: UnsafeCell<Option<BODY>>,
}

impl<BODY> HeapJob<BODY>
where
    BODY: FnOnce() + Send,
{
    pub(super) fn new(func: BODY) -> Self {
        HeapJob {
            job: UnsafeCell::new(Some(func)),
        }
    }

    /// Creates a `JobRef` from this job -- note that this hides all
    /// lifetimes, so it is up to you to ensure that this JobRef
    /// doesn't outlive any data that it closes over.
    pub(super) unsafe fn as_job_ref(self: Box<Self>) -> JobRef {
        let this: *const Self = mem::transmute(self);
        JobRef::new(this)
    }
}

impl<BODY> Job for HeapJob<BODY>
where
    BODY: FnOnce() + Send,
{
    unsafe fn execute(this: *const Self) {
        let this: Box<Self> = mem::transmute(this);
        let job = (*this.job.get()).take().unwrap();
        job();
    }
}

impl<T> JobResult<T> {
    /// Convert the `JobResult` for a job that has finished (and hence
    /// its JobResult is populated) into its return value.
    ///
    /// NB. This will panic if the job panicked.
    pub(super) fn into_return_value(self) -> T {
        match self {
            JobResult::None => unreachable!(),
            JobResult::Ok(x) => x,
            JobResult::Panic(x) => unwind::resume_unwinding(x),
        }
    }
}

/// Indirect queue to provide FIFO job priority.
pub(super) struct JobFifo {
    inner: Injector<JobRef>,
}

impl JobFifo {
    pub(super) fn new() -> Self {
        JobFifo {
            inner: Injector::new(),
        }
    }

    pub(super) unsafe fn push(&self, job_ref: JobRef) -> JobRef {
        // A little indirection ensures that spawns are always prioritized in FIFO order.  The
        // jobs in a thread's deque may be popped from the back (LIFO) or stolen from the front
        // (FIFO), but either way they will end up popping from the front of this queue.
        self.inner.push(job_ref);
        JobRef::new(self)
    }
}

impl Job for JobFifo {
    unsafe fn execute(this: *const Self) {
        // We "execute" a queue by executing its first job, FIFO.
        loop {
            match (*this).inner.steal() {
                Steal::Success(job_ref) => break job_ref.execute(),
                Steal::Empty => panic!("FIFO is empty"),
                Steal::Retry => {}
            }
        }
    }
}