Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// This file contains a set of fairly generic utility functions when working
// with SIMD vectors.
//
// SAFETY: All of the routines below are unsafe to call because they assume
// the necessary CPU target features in order to use particular vendor
// intrinsics. Calling these routines when the underlying CPU does not support
// the appropriate target features is NOT safe. Callers must ensure this
// themselves.
//
// Note that it may not look like this safety invariant is being upheld when
// these routines are called. Namely, the CPU feature check is typically pretty
// far away from when these routines are used. Instead, we rely on the fact
// that certain types serve as a guaranteed receipt that pertinent target
// features are enabled. For example, the only way TeddySlim3Mask256 can be
// constructed is if the AVX2 CPU feature is available. Thus, any code running
// inside of TeddySlim3Mask256 can use any of the functions below without any
// additional checks: its very existence *is* the check.

use std::arch::x86_64::*;

/// Shift `a` to the left by two bytes (removing its two most significant
/// bytes), and concatenate it with the the two most significant bytes of `b`.
#[target_feature(enable = "avx2")]
pub unsafe fn alignr256_14(a: __m256i, b: __m256i) -> __m256i {
    // Credit goes to jneem for figuring this out:
    // https://github.com/jneem/teddy/blob/9ab5e899ad6ef6911aecd3cf1033f1abe6e1f66c/src/x86/teddy_simd.rs#L145-L184
    //
    // TL;DR avx2's PALIGNR instruction is actually just two 128-bit PALIGNR
    // instructions, which is not what we want, so we need to do some extra
    // shuffling.

    // This permute gives us the low 16 bytes of a concatenated with the high
    // 16 bytes of b, in order of most significant to least significant. So
    // `v = a[15:0] b[31:16]`.
    let v = _mm256_permute2x128_si256(b, a, 0x21);
    // This effectively does this (where we deal in terms of byte-indexing
    // and byte-shifting, and use inclusive ranges):
    //
    //   ret[15:0]  := ((a[15:0] << 16) | v[15:0]) >> 14
    //               = ((a[15:0] << 16) | b[31:16]) >> 14
    //   ret[31:16] := ((a[31:16] << 16) | v[31:16]) >> 14
    //               = ((a[31:16] << 16) | a[15:0]) >> 14
    //
    // Which therefore results in:
    //
    //   ret[31:0]  := a[29:16] a[15:14] a[13:0] b[31:30]
    //
    // The end result is that we've effectively done this:
    //
    //   (a << 2) | (b >> 30)
    //
    // When `A` and `B` are strings---where the beginning of the string is in
    // the least significant bits---we effectively result in the following
    // semantic operation:
    //
    //   (A >> 2) | (B << 30)
    //
    // The reversal being attributed to the fact that we are in little-endian.
    _mm256_alignr_epi8(a, v, 14)
}

/// Shift `a` to the left by one byte (removing its most significant byte), and
/// concatenate it with the the most significant byte of `b`.
#[target_feature(enable = "avx2")]
pub unsafe fn alignr256_15(a: __m256i, b: __m256i) -> __m256i {
    // For explanation, see alignr256_14.
    let v = _mm256_permute2x128_si256(b, a, 0x21);
    _mm256_alignr_epi8(a, v, 15)
}

/// Unpack the given 128-bit vector into its 64-bit components. The first
/// element of the array returned corresponds to the least significant 64-bit
/// lane in `a`.
#[target_feature(enable = "ssse3")]
pub unsafe fn unpack64x128(a: __m128i) -> [u64; 2] {
    [
        _mm_cvtsi128_si64(a) as u64,
        _mm_cvtsi128_si64(_mm_srli_si128(a, 8)) as u64,
    ]
}

/// Unpack the given 256-bit vector into its 64-bit components. The first
/// element of the array returned corresponds to the least significant 64-bit
/// lane in `a`.
#[target_feature(enable = "avx2")]
pub unsafe fn unpack64x256(a: __m256i) -> [u64; 4] {
    // Using transmute here is precisely equivalent, but actually slower. It's
    // not quite clear why.
    let lo = _mm256_extracti128_si256(a, 0);
    let hi = _mm256_extracti128_si256(a, 1);
    [
        _mm_cvtsi128_si64(lo) as u64,
        _mm_cvtsi128_si64(_mm_srli_si128(lo, 8)) as u64,
        _mm_cvtsi128_si64(hi) as u64,
        _mm_cvtsi128_si64(_mm_srli_si128(hi, 8)) as u64,
    ]
}

/// Unpack the low 128-bits of `a` and `b`, and return them as 4 64-bit
/// integers.
///
/// More precisely, if a = a4 a3 a2 a1 and b = b4 b3 b2 b1, where each element
/// is a 64-bit integer and a1/b1 correspond to the least significant 64 bits,
/// then the return value is `b2 b1 a2 a1`.
#[target_feature(enable = "avx2")]
pub unsafe fn unpacklo64x256(a: __m256i, b: __m256i) -> [u64; 4] {
    let lo = _mm256_castsi256_si128(a);
    let hi = _mm256_castsi256_si128(b);
    [
        _mm_cvtsi128_si64(lo) as u64,
        _mm_cvtsi128_si64(_mm_srli_si128(lo, 8)) as u64,
        _mm_cvtsi128_si64(hi) as u64,
        _mm_cvtsi128_si64(_mm_srli_si128(hi, 8)) as u64,
    ]
}

/// Returns true if and only if all bits in the given 128-bit vector are 0.
#[target_feature(enable = "ssse3")]
pub unsafe fn is_all_zeroes128(a: __m128i) -> bool {
    let cmp = _mm_cmpeq_epi8(a, zeroes128());
    _mm_movemask_epi8(cmp) as u32 == 0xFFFF
}

/// Returns true if and only if all bits in the given 256-bit vector are 0.
#[target_feature(enable = "avx2")]
pub unsafe fn is_all_zeroes256(a: __m256i) -> bool {
    let cmp = _mm256_cmpeq_epi8(a, zeroes256());
    _mm256_movemask_epi8(cmp) as u32 == 0xFFFFFFFF
}

/// Load a 128-bit vector from slice at the given position. The slice does
/// not need to be unaligned.
///
/// Since this code assumes little-endian (there is no big-endian x86), the
/// bytes starting in `slice[at..]` will be at the least significant bits of
/// the returned vector. This is important for the surrounding code, since for
/// example, shifting the resulting vector right is equivalent to logically
/// shifting the bytes in `slice` left.
#[target_feature(enable = "sse2")]
pub unsafe fn loadu128(slice: &[u8], at: usize) -> __m128i {
    let ptr = slice.get_unchecked(at..).as_ptr();
    _mm_loadu_si128(ptr as *const u8 as *const __m128i)
}

/// Load a 256-bit vector from slice at the given position. The slice does
/// not need to be unaligned.
///
/// Since this code assumes little-endian (there is no big-endian x86), the
/// bytes starting in `slice[at..]` will be at the least significant bits of
/// the returned vector. This is important for the surrounding code, since for
/// example, shifting the resulting vector right is equivalent to logically
/// shifting the bytes in `slice` left.
#[target_feature(enable = "avx2")]
pub unsafe fn loadu256(slice: &[u8], at: usize) -> __m256i {
    let ptr = slice.get_unchecked(at..).as_ptr();
    _mm256_loadu_si256(ptr as *const u8 as *const __m256i)
}

/// Returns a 128-bit vector with all bits set to 0.
#[target_feature(enable = "sse2")]
pub unsafe fn zeroes128() -> __m128i {
    _mm_set1_epi8(0)
}

/// Returns a 256-bit vector with all bits set to 0.
#[target_feature(enable = "avx2")]
pub unsafe fn zeroes256() -> __m256i {
    _mm256_set1_epi8(0)
}

/// Returns a 128-bit vector with all bits set to 1.
#[target_feature(enable = "sse2")]
pub unsafe fn ones128() -> __m128i {
    _mm_set1_epi8(0xFF as u8 as i8)
}

/// Returns a 256-bit vector with all bits set to 1.
#[target_feature(enable = "avx2")]
pub unsafe fn ones256() -> __m256i {
    _mm256_set1_epi8(0xFF as u8 as i8)
}