1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
//! Compute a shortest path using the [Fringe search //! algorithm](https://en.wikipedia.org/wiki/Fringe_search). use super::reverse_path; use indexmap::map::Entry::{Occupied, Vacant}; use indexmap::IndexMap; use num_traits::{Bounded, Zero}; use std::collections::VecDeque; use std::hash::Hash; use std::mem; use std::usize; /// Compute a shortest path using the [Fringe search /// algorithm](https://en.wikipedia.org/wiki/Fringe_search). /// /// The shortest path starting from `start` up to a node for which `success` returns `true` is /// computed and returned along with its total cost, in a `Some`. If no path can be found, `None` /// is returned instead. /// /// - `start` is the starting node. /// - `successors` returns a list of successors for a given node, along with the cost for moving /// from the node to the successor. /// - `heuristic` returns an approximation of the cost from a given node to the goal. The /// approximation must not be greater than the real cost, or a wrong shortest path may be returned. /// - `success` checks whether the goal has been reached. It is not a node as some problems require /// a dynamic solution instead of a fixed node. /// /// A node will never be included twice in the path as determined by the `Eq` relationship. /// /// The returned path comprises both the start and end node. /// /// # Example /// /// We will search the shortest path on a chess board to go from (1, 1) to (4, 6) doing only knight /// moves. /// /// The first version uses an explicit type `Pos` on which the required traits are derived. /// /// ``` /// use pathfinding::prelude::{absdiff, fringe}; /// /// #[derive(Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)] /// struct Pos(i32, i32); /// /// impl Pos { /// fn distance(&self, other: &Pos) -> u32 { /// (absdiff(self.0, other.0) + absdiff(self.1, other.1)) as u32 /// } /// /// fn successors(&self) -> Vec<(Pos, u32)> { /// let &Pos(x, y) = self; /// vec![Pos(x+1,y+2), Pos(x+1,y-2), Pos(x-1,y+2), Pos(x-1,y-2), /// Pos(x+2,y+1), Pos(x+2,y-1), Pos(x-2,y+1), Pos(x-2,y-1)] /// .into_iter().map(|p| (p, 1)).collect() /// } /// } /// /// static GOAL: Pos = Pos(4, 6); /// let result = fringe(&Pos(1, 1), /// |p| p.successors(), /// |p| p.distance(&GOAL) / 3, /// |p| *p == GOAL); /// assert_eq!(result.expect("no path found").1, 4); /// ``` /// /// The second version does not declare a `Pos` type, makes use of more closures, /// and is thus shorter. /// /// ``` /// use pathfinding::prelude::{absdiff, fringe}; /// /// static GOAL: (i32, i32) = (4, 6); /// let result = fringe(&(1, 1), /// |&(x, y)| vec![(x+1,y+2), (x+1,y-2), (x-1,y+2), (x-1,y-2), /// (x+2,y+1), (x+2,y-1), (x-2,y+1), (x-2,y-1)] /// .into_iter().map(|p| (p, 1)), /// |&(x, y)| (absdiff(x, GOAL.0) + absdiff(y, GOAL.1)) / 3, /// |&p| p == GOAL); /// assert_eq!(result.expect("no path found").1, 4); /// ``` pub fn fringe<N, C, FN, IN, FH, FS>( start: &N, mut successors: FN, mut heuristic: FH, mut success: FS, ) -> Option<(Vec<N>, C)> where N: Eq + Hash + Clone, C: Bounded + Zero + Ord + Copy, FN: FnMut(&N) -> IN, IN: IntoIterator<Item = (N, C)>, FH: FnMut(&N) -> C, FS: FnMut(&N) -> bool, { let mut now = VecDeque::new(); let mut later = VecDeque::new(); let mut parents: IndexMap<N, (usize, C)> = IndexMap::new(); let mut flimit = heuristic(start); now.push_back(0); parents.insert(start.clone(), (usize::max_value(), Zero::zero())); loop { if now.is_empty() { return None; } let mut fmin = C::max_value(); while let Some(i) = now.pop_front() { let (g, successors) = { let (node, &(_, g)) = parents.get_index(i).unwrap(); let f = g + heuristic(node); if f > flimit { if f < fmin { fmin = f; } later.push_back(i); continue; } if success(node) { let path = reverse_path(&parents, |&(p, _)| p, i); return Some((path, g)); } (g, successors(node)) }; for (successor, cost) in successors { let g_successor = g + cost; let n; // index for successor match parents.entry(successor) { Vacant(e) => { n = e.index(); e.insert((i, g_successor)); } Occupied(mut e) => { if e.get().1 > g_successor { n = e.index(); e.insert((i, g_successor)); } else { continue; } } } if !remove(&mut later, &n) { remove(&mut now, &n); } now.push_front(n); } } mem::swap(&mut now, &mut later); flimit = fmin; } } fn remove<T: Eq>(v: &mut VecDeque<T>, e: &T) -> bool { if let Some(index) = v.iter().position(|x| x == e) { v.remove(index); true } else { false } }