1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
use num_traits::{Float, FloatConst};
use crate::{Cauchy, Distribution, Standard};
use rand::Rng;
use core::fmt;
#[derive(Clone, Copy, Debug)]
pub struct Poisson<F>
where F: Float + FloatConst, Standard: Distribution<F>
{
lambda: F,
exp_lambda: F,
log_lambda: F,
sqrt_2lambda: F,
magic_val: F,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
ShapeTooSmall,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::ShapeTooSmall => "lambda is not positive in Poisson distribution",
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
impl<F> Poisson<F>
where F: Float + FloatConst, Standard: Distribution<F>
{
pub fn new(lambda: F) -> Result<Poisson<F>, Error> {
if !(lambda > F::zero()) {
return Err(Error::ShapeTooSmall);
}
let log_lambda = lambda.ln();
Ok(Poisson {
lambda,
exp_lambda: (-lambda).exp(),
log_lambda,
sqrt_2lambda: (F::from(2.0).unwrap() * lambda).sqrt(),
magic_val: lambda * log_lambda - crate::utils::log_gamma(F::one() + lambda),
})
}
}
impl<F> Distribution<F> for Poisson<F>
where F: Float + FloatConst, Standard: Distribution<F>
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
if self.lambda < F::from(12.0).unwrap() {
let mut result = F::zero();
let mut p = F::one();
while p > self.exp_lambda {
p = p*rng.gen::<F>();
result = result + F::one();
}
result - F::one()
}
else {
let cauchy = Cauchy::new(F::zero(), F::one()).unwrap();
let mut result;
loop {
let mut comp_dev;
loop {
comp_dev = rng.sample(cauchy);
result = self.sqrt_2lambda * comp_dev + self.lambda;
if result >= F::zero() {
break;
}
}
result = result.floor();
let check = F::from(0.9).unwrap()
* (F::one() + comp_dev * comp_dev)
* (result * self.log_lambda
- crate::utils::log_gamma(F::one() + result)
- self.magic_val)
.exp();
if rng.gen::<F>() <= check {
break;
}
}
result
}
}
}
#[cfg(test)]
mod test {
use super::*;
fn test_poisson_avg_gen<F: Float + FloatConst>(lambda: F, tol: F)
where Standard: Distribution<F>
{
let poisson = Poisson::new(lambda).unwrap();
let mut rng = crate::test::rng(123);
let mut sum = F::zero();
for _ in 0..1000 {
sum = sum + poisson.sample(&mut rng);
}
let avg = sum / F::from(1000.0).unwrap();
assert!((avg - lambda).abs() < tol);
}
#[test]
fn test_poisson_avg() {
test_poisson_avg_gen::<f64>(10.0, 0.5);
test_poisson_avg_gen::<f64>(15.0, 0.5);
test_poisson_avg_gen::<f32>(10.0, 0.5);
test_poisson_avg_gen::<f32>(15.0, 0.5);
}
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_zero() {
Poisson::new(0.0).unwrap();
}
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_neg() {
Poisson::new(-10.0).unwrap();
}
}