1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
use fixedbitset::FixedBitSet;
use std::marker;

use super::graph::{Graph, IndexType, NodeIndex};
use super::{EdgeType, Incoming};

use super::visit::GetAdjacencyMatrix;

#[derive(Debug)]
struct Vf2State<Ty, Ix> {
    /// The current mapping M(s) of nodes from G0 → G1 and G1 → G0,
    /// NodeIndex::end() for no mapping.
    mapping: Vec<NodeIndex<Ix>>,
    /// out[i] is non-zero if i is in either M_0(s) or Tout_0(s)
    /// These are all the next vertices that are not mapped yet, but
    /// have an outgoing edge from the mapping.
    out: Vec<usize>,
    /// ins[i] is non-zero if i is in either M_0(s) or Tin_0(s)
    /// These are all the incoming vertices, those not mapped yet, but
    /// have an edge from them into the mapping.
    /// Unused if graph is undirected -- it's identical with out in that case.
    ins: Vec<usize>,
    out_size: usize,
    ins_size: usize,
    adjacency_matrix: FixedBitSet,
    generation: usize,
    _etype: marker::PhantomData<Ty>,
}

impl<Ty, Ix> Vf2State<Ty, Ix>
where
    Ty: EdgeType,
    Ix: IndexType,
{
    pub fn new<N, E>(g: &Graph<N, E, Ty, Ix>) -> Self {
        let c0 = g.node_count();
        let mut state = Vf2State {
            mapping: Vec::with_capacity(c0),
            out: Vec::with_capacity(c0),
            ins: Vec::with_capacity(c0 * (g.is_directed() as usize)),
            out_size: 0,
            ins_size: 0,
            adjacency_matrix: g.adjacency_matrix(),
            generation: 0,
            _etype: marker::PhantomData,
        };
        for _ in 0..c0 {
            state.mapping.push(NodeIndex::end());
            state.out.push(0);
            if Ty::is_directed() {
                state.ins.push(0);
            }
        }
        state
    }

    /// Return **true** if we have a complete mapping
    pub fn is_complete(&self) -> bool {
        self.generation == self.mapping.len()
    }

    /// Add mapping **from** <-> **to** to the state.
    pub fn push_mapping<N, E>(
        &mut self,
        from: NodeIndex<Ix>,
        to: NodeIndex<Ix>,
        g: &Graph<N, E, Ty, Ix>,
    ) {
        self.generation += 1;
        let s = self.generation;
        self.mapping[from.index()] = to;
        // update T0 & T1 ins/outs
        // T0out: Node in G0 not in M0 but successor of a node in M0.
        // st.out[0]: Node either in M0 or successor of M0
        for ix in g.neighbors(from) {
            if self.out[ix.index()] == 0 {
                self.out[ix.index()] = s;
                self.out_size += 1;
            }
        }
        if g.is_directed() {
            for ix in g.neighbors_directed(from, Incoming) {
                if self.ins[ix.index()] == 0 {
                    self.ins[ix.index()] = s;
                    self.ins_size += 1;
                }
            }
        }
    }

    /// Restore the state to before the last added mapping
    pub fn pop_mapping<N, E>(&mut self, from: NodeIndex<Ix>, g: &Graph<N, E, Ty, Ix>) {
        let s = self.generation;
        self.generation -= 1;

        // undo (n, m) mapping
        self.mapping[from.index()] = NodeIndex::end();

        // unmark in ins and outs
        for ix in g.neighbors(from) {
            if self.out[ix.index()] == s {
                self.out[ix.index()] = 0;
                self.out_size -= 1;
            }
        }
        if g.is_directed() {
            for ix in g.neighbors_directed(from, Incoming) {
                if self.ins[ix.index()] == s {
                    self.ins[ix.index()] = 0;
                    self.ins_size -= 1;
                }
            }
        }
    }

    /// Find the next (least) node in the Tout set.
    pub fn next_out_index(&self, from_index: usize) -> Option<usize> {
        self.out[from_index..]
            .iter()
            .enumerate()
            .find(move |&(index, elt)| {
                *elt > 0 && self.mapping[from_index + index] == NodeIndex::end()
            })
            .map(|(index, _)| index)
    }

    /// Find the next (least) node in the Tin set.
    pub fn next_in_index(&self, from_index: usize) -> Option<usize> {
        if !Ty::is_directed() {
            return None;
        }
        self.ins[from_index..]
            .iter()
            .enumerate()
            .find(move |&(index, elt)| {
                *elt > 0 && self.mapping[from_index + index] == NodeIndex::end()
            })
            .map(|(index, _)| index)
    }

    /// Find the next (least) node in the N - M set.
    pub fn next_rest_index(&self, from_index: usize) -> Option<usize> {
        self.mapping[from_index..]
            .iter()
            .enumerate()
            .find(|&(_, elt)| *elt == NodeIndex::end())
            .map(|(index, _)| index)
    }
}

/// [Graph] Return `true` if the graphs `g0` and `g1` are isomorphic.
///
/// Using the VF2 algorithm, only matching graph syntactically (graph
/// structure).
///
/// The graphs should not be multigraphs.
///
/// **Reference**
///
/// * Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento;
///   *A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs*
pub fn is_isomorphic<N, E, Ty, Ix>(g0: &Graph<N, E, Ty, Ix>, g1: &Graph<N, E, Ty, Ix>) -> bool
where
    Ty: EdgeType,
    Ix: IndexType,
{
    if g0.node_count() != g1.node_count() || g0.edge_count() != g1.edge_count() {
        return false;
    }

    let mut st = [Vf2State::new(g0), Vf2State::new(g1)];
    try_match(&mut st, g0, g1, &mut NoSemanticMatch, &mut NoSemanticMatch).unwrap_or(false)
}

/// [Graph] Return `true` if the graphs `g0` and `g1` are isomorphic.
///
/// Using the VF2 algorithm, examining both syntactic and semantic
/// graph isomorphism (graph structure and matching node and edge weights).
///
/// The graphs should not be multigraphs.
pub fn is_isomorphic_matching<N, E, Ty, Ix, F, G>(
    g0: &Graph<N, E, Ty, Ix>,
    g1: &Graph<N, E, Ty, Ix>,
    mut node_match: F,
    mut edge_match: G,
) -> bool
where
    Ty: EdgeType,
    Ix: IndexType,
    F: FnMut(&N, &N) -> bool,
    G: FnMut(&E, &E) -> bool,
{
    if g0.node_count() != g1.node_count() || g0.edge_count() != g1.edge_count() {
        return false;
    }

    let mut st = [Vf2State::new(g0), Vf2State::new(g1)];
    try_match(&mut st, g0, g1, &mut node_match, &mut edge_match).unwrap_or(false)
}

trait SemanticMatcher<T> {
    fn enabled() -> bool;
    fn eq(&mut self, _: &T, _: &T) -> bool;
}

struct NoSemanticMatch;

impl<T> SemanticMatcher<T> for NoSemanticMatch {
    #[inline]
    fn enabled() -> bool {
        false
    }
    #[inline]
    fn eq(&mut self, _: &T, _: &T) -> bool {
        true
    }
}

impl<T, F> SemanticMatcher<T> for F
where
    F: FnMut(&T, &T) -> bool,
{
    #[inline]
    fn enabled() -> bool {
        true
    }
    #[inline]
    fn eq(&mut self, a: &T, b: &T) -> bool {
        self(a, b)
    }
}

/// Return Some(bool) if isomorphism is decided, else None.
fn try_match<N, E, Ty, Ix, F, G>(
    mut st: &mut [Vf2State<Ty, Ix>; 2],
    g0: &Graph<N, E, Ty, Ix>,
    g1: &Graph<N, E, Ty, Ix>,
    node_match: &mut F,
    edge_match: &mut G,
) -> Option<bool>
where
    Ty: EdgeType,
    Ix: IndexType,
    F: SemanticMatcher<N>,
    G: SemanticMatcher<E>,
{
    if st[0].is_complete() {
        return Some(true);
    }
    let g = [g0, g1];
    let graph_indices = 0..2;
    let end = NodeIndex::end();

    // A "depth first" search of a valid mapping from graph 1 to graph 2

    // F(s, n, m) -- evaluate state s and add mapping n <-> m

    // Find least T1out node (in st.out[1] but not in M[1])
    #[derive(Copy, Clone, PartialEq, Debug)]
    enum OpenList {
        Out,
        In,
        Other,
    }

    #[derive(Clone, PartialEq, Debug)]
    enum Frame<N: marker::Copy> {
        Outer,
        Inner { nodes: [N; 2], open_list: OpenList },
        Unwind { nodes: [N; 2], open_list: OpenList },
    }

    let next_candidate =
        |st: &mut [Vf2State<Ty, Ix>; 2]| -> Option<(NodeIndex<Ix>, NodeIndex<Ix>, OpenList)> {
            let mut to_index;
            let mut from_index = None;
            let mut open_list = OpenList::Out;
            // Try the out list
            to_index = st[1].next_out_index(0);

            if to_index.is_some() {
                from_index = st[0].next_out_index(0);
                open_list = OpenList::Out;
            }
            // Try the in list
            if to_index.is_none() || from_index.is_none() {
                to_index = st[1].next_in_index(0);

                if to_index.is_some() {
                    from_index = st[0].next_in_index(0);
                    open_list = OpenList::In;
                }
            }
            // Try the other list -- disconnected graph
            if to_index.is_none() || from_index.is_none() {
                to_index = st[1].next_rest_index(0);
                if to_index.is_some() {
                    from_index = st[0].next_rest_index(0);
                    open_list = OpenList::Other;
                }
            }
            match (from_index, to_index) {
                (Some(n), Some(m)) => Some((NodeIndex::new(n), NodeIndex::new(m), open_list)),
                // No more candidates
                _ => None,
            }
        };
    let next_from_ix = |st: &mut [Vf2State<Ty, Ix>; 2],
                        nx: NodeIndex<Ix>,
                        open_list: OpenList|
     -> Option<NodeIndex<Ix>> {
        // Find the next node index to try on the `from` side of the mapping
        let start = nx.index() + 1;
        let cand0 = match open_list {
            OpenList::Out => st[0].next_out_index(start),
            OpenList::In => st[0].next_in_index(start),
            OpenList::Other => st[0].next_rest_index(start),
        }
        .map(|c| c + start); // compensate for start offset.
        match cand0 {
            None => None, // no more candidates
            Some(ix) => {
                debug_assert!(ix >= start);
                Some(NodeIndex::new(ix))
            }
        }
    };
    //fn pop_state(nodes: [NodeIndex<Ix>; 2]) {
    let pop_state = |st: &mut [Vf2State<Ty, Ix>; 2], nodes: [NodeIndex<Ix>; 2]| {
        // Restore state.
        for j in graph_indices.clone() {
            st[j].pop_mapping(nodes[j], g[j]);
        }
    };
    //fn push_state(nodes: [NodeIndex<Ix>; 2]) {
    let push_state = |st: &mut [Vf2State<Ty, Ix>; 2], nodes: [NodeIndex<Ix>; 2]| {
        // Add mapping nx <-> mx to the state
        for j in graph_indices.clone() {
            st[j].push_mapping(nodes[j], nodes[1 - j], g[j]);
        }
    };
    //fn is_feasible(nodes: [NodeIndex<Ix>; 2]) -> bool {
    let mut is_feasible = |st: &mut [Vf2State<Ty, Ix>; 2], nodes: [NodeIndex<Ix>; 2]| -> bool {
        // Check syntactic feasibility of mapping by ensuring adjacencies
        // of nx map to adjacencies of mx.
        //
        // nx == map to => mx
        //
        // R_succ
        //
        // Check that every neighbor of nx is mapped to a neighbor of mx,
        // then check the reverse, from mx to nx. Check that they have the same
        // count of edges.
        //
        // Note: We want to check the lookahead measures here if we can,
        // R_out: Equal for G0, G1: Card(Succ(G, n) ^ Tout); for both Succ and Pred
        // R_in: Same with Tin
        // R_new: Equal for G0, G1: Ñ n Pred(G, n); both Succ and Pred,
        //      Ñ is G0 - M - Tin - Tout
        // last attempt to add these did not speed up any of the testcases
        let mut succ_count = [0, 0];
        for j in graph_indices.clone() {
            for n_neigh in g[j].neighbors(nodes[j]) {
                succ_count[j] += 1;
                // handle the self loop case; it's not in the mapping (yet)
                let m_neigh = if nodes[j] != n_neigh {
                    st[j].mapping[n_neigh.index()]
                } else {
                    nodes[1 - j]
                };
                if m_neigh == end {
                    continue;
                }
                let has_edge =
                    g[1 - j].is_adjacent(&st[1 - j].adjacency_matrix, nodes[1 - j], m_neigh);
                if !has_edge {
                    return false;
                }
            }
        }
        if succ_count[0] != succ_count[1] {
            return false;
        }
        // R_pred
        if g[0].is_directed() {
            let mut pred_count = [0, 0];
            for j in graph_indices.clone() {
                for n_neigh in g[j].neighbors_directed(nodes[j], Incoming) {
                    pred_count[j] += 1;
                    // the self loop case is handled in outgoing
                    let m_neigh = st[j].mapping[n_neigh.index()];
                    if m_neigh == end {
                        continue;
                    }
                    let has_edge =
                        g[1 - j].is_adjacent(&st[1 - j].adjacency_matrix, m_neigh, nodes[1 - j]);
                    if !has_edge {
                        return false;
                    }
                }
            }
            if pred_count[0] != pred_count[1] {
                return false;
            }
        }
        // semantic feasibility: compare associated data for nodes
        if F::enabled() && !node_match.eq(&g[0][nodes[0]], &g[1][nodes[1]]) {
            return false;
        }
        // semantic feasibility: compare associated data for edges
        if G::enabled() {
            // outgoing edges
            for j in graph_indices.clone() {
                let mut edges = g[j].neighbors(nodes[j]).detach();
                while let Some((n_edge, n_neigh)) = edges.next(g[j]) {
                    // handle the self loop case; it's not in the mapping (yet)
                    let m_neigh = if nodes[j] != n_neigh {
                        st[j].mapping[n_neigh.index()]
                    } else {
                        nodes[1 - j]
                    };
                    if m_neigh == end {
                        continue;
                    }
                    match g[1 - j].find_edge(nodes[1 - j], m_neigh) {
                        Some(m_edge) => {
                            if !edge_match.eq(&g[j][n_edge], &g[1 - j][m_edge]) {
                                return false;
                            }
                        }
                        None => unreachable!(), // covered by syntactic check
                    }
                }
            }
            // incoming edges
            if g[0].is_directed() {
                for j in graph_indices.clone() {
                    let mut edges = g[j].neighbors_directed(nodes[j], Incoming).detach();
                    while let Some((n_edge, n_neigh)) = edges.next(g[j]) {
                        // the self loop case is handled in outgoing
                        let m_neigh = st[j].mapping[n_neigh.index()];
                        if m_neigh == end {
                            continue;
                        }
                        match g[1 - j].find_edge(m_neigh, nodes[1 - j]) {
                            Some(m_edge) => {
                                if !edge_match.eq(&g[j][n_edge], &g[1 - j][m_edge]) {
                                    return false;
                                }
                            }
                            None => unreachable!(), // covered by syntactic check
                        }
                    }
                }
            }
        }
        true
    };
    let mut stack: Vec<Frame<NodeIndex<Ix>>> = vec![Frame::Outer];

    while let Some(frame) = stack.pop() {
        match frame {
            Frame::Unwind {
                nodes,
                open_list: ol,
            } => {
                pop_state(&mut st, nodes);

                match next_from_ix(&mut st, nodes[0], ol) {
                    None => continue,
                    Some(nx) => {
                        let f = Frame::Inner {
                            nodes: [nx, nodes[1]],
                            open_list: ol,
                        };
                        stack.push(f);
                    }
                }
            }
            Frame::Outer => match next_candidate(&mut st) {
                None => continue,
                Some((nx, mx, ol)) => {
                    let f = Frame::Inner {
                        nodes: [nx, mx],
                        open_list: ol,
                    };
                    stack.push(f);
                }
            },
            Frame::Inner {
                nodes,
                open_list: ol,
            } => {
                if is_feasible(&mut st, nodes) {
                    push_state(&mut st, nodes);
                    if st[0].is_complete() {
                        return Some(true);
                    }
                    // Check cardinalities of Tin, Tout sets
                    if st[0].out_size == st[1].out_size && st[0].ins_size == st[1].ins_size {
                        let f0 = Frame::Unwind {
                            nodes,
                            open_list: ol,
                        };
                        stack.push(f0);
                        stack.push(Frame::Outer);
                        continue;
                    }
                    pop_state(&mut st, nodes);
                }
                match next_from_ix(&mut st, nodes[0], ol) {
                    None => continue,
                    Some(nx) => {
                        let f = Frame::Inner {
                            nodes: [nx, nodes[1]],
                            open_list: ol,
                        };
                        stack.push(f);
                    }
                }
            }
        }
    }
    None
}