1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
//! A module for all encoding needs.
use crate::error::{BufferResult, LzwError, LzwStatus};
use crate::{BitOrder, Code, StreamBuf, MAX_CODESIZE, MAX_ENTRIES, STREAM_BUF_SIZE};

use crate::alloc::{boxed::Box, vec::Vec};
#[cfg(feature = "std")]
use crate::error::StreamResult;
#[cfg(feature = "std")]
use std::io::{self, BufRead, Write};

/// The state for encoding data with an LZW algorithm.
///
/// The same structure can be utilized with streams as well as your own buffers and driver logic.
/// It may even be possible to mix them if you are sufficiently careful not to lose any written
/// data in the process.
pub struct Encoder {
    /// Internally dispatch via a dynamic trait object. This did not have any significant
    /// performance impact as we batch data internally and this pointer does not change after
    /// creation!
    state: Box<dyn Stateful + Send + 'static>,
}

/// A encoding stream sink.
///
/// See [`Encoder::into_stream`] on how to create this type.
///
/// [`Encoder::into_stream`]: struct.Encoder.html#method.into_stream
#[cfg_attr(
    not(feature = "std"),
    deprecated = "This type is only useful with the `std` feature."
)]
#[cfg_attr(not(feature = "std"), allow(dead_code))]
pub struct IntoStream<'d, W> {
    encoder: &'d mut Encoder,
    writer: W,
    buffer: Option<StreamBuf<'d>>,
    default_size: usize,
}

/// An async decoding sink.
///
/// See [`Encoder::into_async`] on how to create this type.
///
/// [`Encoder::into_async`]: struct.Encoder.html#method.into_async
#[cfg(feature = "async")]
pub struct IntoAsync<'d, W> {
    encoder: &'d mut Encoder,
    writer: W,
    buffer: Option<StreamBuf<'d>>,
    default_size: usize,
}

trait Stateful {
    fn advance(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult;
    fn mark_ended(&mut self) -> bool;
    /// Reset the state tracking if end code has been written.
    fn restart(&mut self);
    /// Reset the decoder to the beginning, dropping all buffers etc.
    fn reset(&mut self);
}

struct EncodeState<B: Buffer> {
    /// The configured minimal code size.
    min_size: u8,
    /// The current encoding symbol tree.
    tree: Tree,
    /// If we have pushed the end code.
    has_ended: bool,
    /// If tiff then bumps are a single code sooner.
    is_tiff: bool,
    /// The code corresponding to the currently read characters.
    current_code: Code,
    /// The clear code for resetting the dictionary.
    clear_code: Code,
    /// The bit buffer for encoding.
    buffer: B,
}

struct MsbBuffer {
    /// The current code length.
    code_size: u8,
    /// The buffer bits.
    buffer: u64,
    /// The number of valid buffer bits.
    bits_in_buffer: u8,
}

struct LsbBuffer {
    /// The current code length.
    code_size: u8,
    /// The buffer bits.
    buffer: u64,
    /// The number of valid buffer bits.
    bits_in_buffer: u8,
}

trait Buffer {
    fn new(size: u8) -> Self;
    /// Reset the code size in the buffer.
    fn reset(&mut self, min_size: u8);
    /// Apply effects of a Clear Code.
    fn clear(&mut self, min_size: u8);
    /// Insert a code into the buffer.
    fn buffer_code(&mut self, code: Code);
    /// Push bytes if the buffer space is getting small.
    fn push_out(&mut self, out: &mut &mut [u8]) -> bool;
    /// Flush all full bytes, returning if at least one more byte remains.
    fn flush_out(&mut self, out: &mut &mut [u8]) -> bool;
    /// Pad the buffer to a full byte.
    fn buffer_pad(&mut self);
    /// Increase the maximum code size.
    fn bump_code_size(&mut self);
    /// Return the maximum code with the current code size.
    fn max_code(&self) -> Code;
    /// Return the current code size in bits.
    fn code_size(&self) -> u8;
}

/// One tree node for at most each code.
/// To avoid using too much memory we keep nodes with few successors in optimized form. This form
/// doesn't offer lookup by indexing but instead does a linear search.
#[derive(Default)]
struct Tree {
    simples: Vec<Simple>,
    complex: Vec<Full>,
    keys: Vec<CompressedKey>,
}

#[derive(Clone, Copy)]
enum FullKey {
    NoSuccessor,
    Simple(u16),
    Full(u16),
}

#[derive(Clone, Copy)]
struct CompressedKey(u16);

const SHORT: usize = 16;

#[derive(Clone, Copy)]
struct Simple {
    codes: [Code; SHORT],
    chars: [u8; SHORT],
    count: u8,
}

#[derive(Clone, Copy)]
struct Full {
    char_continuation: [Code; 256],
}

impl Encoder {
    /// Create a new encoder with the specified bit order and symbol size.
    ///
    /// The algorithm for dynamically increasing the code symbol bit width is compatible with the
    /// original specification. In particular you will need to specify an `Lsb` bit oder to encode
    /// the data portion of a compressed `gif` image.
    ///
    /// # Panics
    ///
    /// The `size` needs to be in the interval `2..=12`.
    pub fn new(order: BitOrder, size: u8) -> Self {
        type Boxed = Box<dyn Stateful + Send + 'static>;
        super::assert_encode_size(size);
        let state = match order {
            BitOrder::Lsb => Box::new(EncodeState::<LsbBuffer>::new(size)) as Boxed,
            BitOrder::Msb => Box::new(EncodeState::<MsbBuffer>::new(size)) as Boxed,
        };

        Encoder { state }
    }

    /// Create a TIFF compatible encoder with the specified bit order and symbol size.
    ///
    /// The algorithm for dynamically increasing the code symbol bit width is compatible with the
    /// TIFF specification, which is a misinterpretation of the original algorithm for increasing
    /// the code size. It switches one symbol sooner.
    ///
    /// # Panics
    ///
    /// The `size` needs to be in the interval `2..=12`.
    pub fn with_tiff_size_switch(order: BitOrder, size: u8) -> Self {
        type Boxed = Box<dyn Stateful + Send + 'static>;
        super::assert_encode_size(size);
        let state = match order {
            BitOrder::Lsb => {
                let mut state = Box::new(EncodeState::<LsbBuffer>::new(size));
                state.is_tiff = true;
                state as Boxed
            }
            BitOrder::Msb => {
                let mut state = Box::new(EncodeState::<MsbBuffer>::new(size));
                state.is_tiff = true;
                state as Boxed
            }
        };

        Encoder { state }
    }

    /// Encode some bytes from `inp` into `out`.
    ///
    /// See [`into_stream`] for high-level functions (this interface is only available with the
    /// `std` feature) and [`finish`] for marking the input data as complete.
    ///
    /// When some input byte is invalid, i.e. is not smaller than `1 << size`, then that byte and
    /// all following ones will _not_ be consumed and the `status` of the result will signal an
    /// error. The result will also indicate that all bytes up to but not including the offending
    /// byte have been consumed. You may try again with a fixed byte.
    ///
    /// [`into_stream`]: #method.into_stream
    /// [`finish`]: #method.finish
    pub fn encode_bytes(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult {
        self.state.advance(inp, out)
    }

    /// Construct a encoder into a writer.
    #[cfg(feature = "std")]
    pub fn into_stream<W: Write>(&mut self, writer: W) -> IntoStream<'_, W> {
        IntoStream {
            encoder: self,
            writer,
            buffer: None,
            default_size: STREAM_BUF_SIZE,
        }
    }

    /// Construct a encoder into an async writer.
    #[cfg(feature = "async")]
    pub fn into_async<W: futures::io::AsyncWrite>(&mut self, writer: W) -> IntoAsync<'_, W> {
        IntoAsync {
            encoder: self,
            writer,
            buffer: None,
            default_size: STREAM_BUF_SIZE,
        }
    }

    /// Mark the encoding as in the process of finishing.
    ///
    /// The next following call to `encode_bytes` which is able to consume the complete input will
    /// also try to emit an end code. It's not recommended, but also not unsound, to use different
    /// byte slices in different calls from this point forward and thus to 'delay' the actual end
    /// of the data stream. The behaviour after the end marker has been written is unspecified but
    /// sound.
    pub fn finish(&mut self) {
        self.state.mark_ended();
    }

    /// Undo marking this data stream as ending.
    /// FIXME: clarify how this interacts with padding introduced after end code.
    #[allow(dead_code)]
    pub(crate) fn restart(&mut self) {
        self.state.restart()
    }

    /// Reset all internal state.
    ///
    /// This produce an encoder as if just constructed with `new` but taking slightly less work. In
    /// particular it will not deallocate any internal allocations. It will also avoid some
    /// duplicate setup work.
    pub fn reset(&mut self) {
        self.state.reset()
    }
}

#[cfg(feature = "std")]
impl<'d, W: Write> IntoStream<'d, W> {
    /// Encode data from a reader.
    ///
    /// This will drain the supplied reader. It will not encode an end marker after all data has
    /// been processed.
    pub fn encode(&mut self, read: impl BufRead) -> StreamResult {
        self.encode_part(read, false)
    }

    /// Encode data from a reader and an end marker.
    pub fn encode_all(mut self, read: impl BufRead) -> StreamResult {
        self.encode_part(read, true)
    }

    /// Set the size of the intermediate encode buffer.
    ///
    /// A buffer of this size is allocated to hold one part of the encoded stream when no buffer is
    /// available and any encoding method is called. No buffer is allocated if `set_buffer` has
    /// been called. The buffer is reused.
    ///
    /// # Panics
    /// This method panics if `size` is `0`.
    pub fn set_buffer_size(&mut self, size: usize) {
        assert_ne!(size, 0, "Attempted to set empty buffer");
        self.default_size = size;
    }

    /// Use a particular buffer as an intermediate encode buffer.
    ///
    /// Calling this sets or replaces the buffer. When a buffer has been set then it is used
    /// instead of a dynamically allocating a buffer. Note that the size of the buffer is relevant
    /// for efficient encoding as there is additional overhead from `write` calls each time the
    /// buffer has been filled.
    ///
    /// # Panics
    /// This method panics if the `buffer` is empty.
    pub fn set_buffer(&mut self, buffer: &'d mut [u8]) {
        assert_ne!(buffer.len(), 0, "Attempted to set empty buffer");
        self.buffer = Some(StreamBuf::Borrowed(buffer));
    }

    fn encode_part(&mut self, mut read: impl BufRead, finish: bool) -> StreamResult {
        let IntoStream {
            encoder,
            writer,
            buffer,
            default_size,
        } = self;
        enum Progress {
            Ok,
            Done,
        }

        let mut bytes_read = 0;
        let mut bytes_written = 0;

        let read_bytes = &mut bytes_read;
        let write_bytes = &mut bytes_written;

        let outbuf: &mut [u8] =
            match { buffer.get_or_insert_with(|| StreamBuf::Owned(vec![0u8; *default_size])) } {
                StreamBuf::Borrowed(slice) => &mut *slice,
                StreamBuf::Owned(vec) => &mut *vec,
            };
        assert!(!outbuf.is_empty());

        let once = move || {
            let data = read.fill_buf()?;

            if data.is_empty() {
                if finish {
                    encoder.finish();
                } else {
                    return Ok(Progress::Done);
                }
            }

            let result = encoder.encode_bytes(data, &mut outbuf[..]);
            *read_bytes += result.consumed_in;
            *write_bytes += result.consumed_out;
            read.consume(result.consumed_in);

            let done = result.status.map_err(|err| {
                io::Error::new(io::ErrorKind::InvalidData, &*format!("{:?}", err))
            })?;

            if let LzwStatus::Done = done {
                writer.write_all(&outbuf[..result.consumed_out])?;
                return Ok(Progress::Done);
            }

            if let LzwStatus::NoProgress = done {
                return Err(io::Error::new(
                    io::ErrorKind::UnexpectedEof,
                    "No more data but no end marker detected",
                ));
            }

            writer.write_all(&outbuf[..result.consumed_out])?;
            Ok(Progress::Ok)
        };

        let status = core::iter::repeat_with(once)
            // scan+fuse can be replaced with map_while
            .scan((), |(), result| match result {
                Ok(Progress::Ok) => Some(Ok(())),
                Err(err) => Some(Err(err)),
                Ok(Progress::Done) => None,
            })
            .fuse()
            .collect();

        StreamResult {
            bytes_read,
            bytes_written,
            status,
        }
    }
}

// This is implemented in a separate file, so that 1.34.2 does not parse it. Otherwise, it would
// trip over the usage of await, which is a reserved keyword in that edition/version. It only
// contains an impl block.
#[cfg(feature = "async")]
#[path = "encode_into_async.rs"]
mod impl_encode_into_async;

impl<B: Buffer> EncodeState<B> {
    fn new(min_size: u8) -> Self {
        let clear_code = 1 << min_size;
        let mut tree = Tree::default();
        tree.init(min_size);
        let mut state = EncodeState {
            min_size,
            tree,
            has_ended: false,
            is_tiff: false,
            current_code: clear_code,
            clear_code,
            buffer: B::new(min_size),
        };
        state.buffer_code(clear_code);
        state
    }
}

impl<B: Buffer> Stateful for EncodeState<B> {
    fn advance(&mut self, mut inp: &[u8], mut out: &mut [u8]) -> BufferResult {
        let c_in = inp.len();
        let c_out = out.len();
        let mut status = Ok(LzwStatus::Ok);

        'encoding: loop {
            if self.push_out(&mut out) {
                break;
            }

            if inp.is_empty() && self.has_ended {
                let end = self.end_code();
                if self.current_code != end {
                    if self.current_code != self.clear_code {
                        self.buffer_code(self.current_code);

                        // When reading this code, the decoder will add an extra entry to its table
                        // before reading th end code. Thusly, it may increase its code size based
                        // on this additional entry.
                        if self.tree.keys.len() + usize::from(self.is_tiff)
                            > usize::from(self.buffer.max_code())
                            && self.buffer.code_size() < MAX_CODESIZE
                        {
                            self.buffer.bump_code_size();
                        }
                    }
                    self.buffer_code(end);
                    self.current_code = end;
                    self.buffer_pad();
                }

                break;
            }

            let mut next_code = None;
            let mut bytes = inp.iter();
            while let Some(&byte) = bytes.next() {
                if self.min_size < 8 && byte >= 1 << self.min_size {
                    status = Err(LzwError::InvalidCode);
                    break 'encoding;
                }

                inp = bytes.as_slice();
                match self.tree.iterate(self.current_code, byte) {
                    Ok(code) => self.current_code = code,
                    Err(_) => {
                        next_code = Some(self.current_code);

                        self.current_code = u16::from(byte);
                        break;
                    }
                }
            }

            match next_code {
                // No more bytes, no code produced.
                None => break,
                Some(code) => {
                    self.buffer_code(code);

                    if self.tree.keys.len() + usize::from(self.is_tiff)
                        > usize::from(self.buffer.max_code()) + 1
                        && self.buffer.code_size() < MAX_CODESIZE
                    {
                        self.buffer.bump_code_size();
                    }

                    if self.tree.keys.len() > MAX_ENTRIES {
                        self.buffer_code(self.clear_code);
                        self.tree.reset(self.min_size);
                        self.buffer.clear(self.min_size);
                    }
                }
            }
        }

        if inp.is_empty() && self.current_code == self.end_code() {
            if !self.flush_out(&mut out) {
                status = Ok(LzwStatus::Done);
            }
        }

        BufferResult {
            consumed_in: c_in - inp.len(),
            consumed_out: c_out - out.len(),
            status,
        }
    }

    fn mark_ended(&mut self) -> bool {
        core::mem::replace(&mut self.has_ended, true)
    }

    fn restart(&mut self) {
        self.has_ended = false;
    }

    fn reset(&mut self) {
        self.restart();
        self.current_code = self.clear_code;
        self.tree.reset(self.min_size);
        self.buffer.reset(self.min_size);
        self.buffer_code(self.clear_code);
    }
}

impl<B: Buffer> EncodeState<B> {
    fn push_out(&mut self, out: &mut &mut [u8]) -> bool {
        self.buffer.push_out(out)
    }

    fn flush_out(&mut self, out: &mut &mut [u8]) -> bool {
        self.buffer.flush_out(out)
    }

    fn end_code(&self) -> Code {
        self.clear_code + 1
    }

    fn buffer_pad(&mut self) {
        self.buffer.buffer_pad();
    }

    fn buffer_code(&mut self, code: Code) {
        self.buffer.buffer_code(code);
    }
}

impl Buffer for MsbBuffer {
    fn new(min_size: u8) -> Self {
        MsbBuffer {
            code_size: min_size + 1,
            buffer: 0,
            bits_in_buffer: 0,
        }
    }

    fn reset(&mut self, min_size: u8) {
        self.code_size = min_size + 1;
        self.buffer = 0;
        self.bits_in_buffer = 0;
    }

    fn clear(&mut self, min_size: u8) {
        self.code_size = min_size + 1;
    }

    fn buffer_code(&mut self, code: Code) {
        let shift = 64 - self.bits_in_buffer - self.code_size;
        self.buffer |= u64::from(code) << shift;
        self.bits_in_buffer += self.code_size;
    }

    fn push_out(&mut self, out: &mut &mut [u8]) -> bool {
        if self.bits_in_buffer + 2 * self.code_size < 64 {
            return false;
        }

        self.flush_out(out)
    }

    fn flush_out(&mut self, out: &mut &mut [u8]) -> bool {
        let want = usize::from(self.bits_in_buffer / 8);
        let count = want.min((*out).len());
        let (bytes, tail) = core::mem::replace(out, &mut []).split_at_mut(count);
        *out = tail;

        for b in bytes {
            *b = ((self.buffer & 0xff00_0000_0000_0000) >> 56) as u8;
            self.buffer <<= 8;
            self.bits_in_buffer -= 8;
        }

        count < want
    }

    fn buffer_pad(&mut self) {
        let to_byte = self.bits_in_buffer.wrapping_neg() & 0x7;
        self.bits_in_buffer += to_byte;
    }

    fn bump_code_size(&mut self) {
        self.code_size += 1;
    }

    fn max_code(&self) -> Code {
        (1 << self.code_size) - 1
    }

    fn code_size(&self) -> u8 {
        self.code_size
    }
}

impl Buffer for LsbBuffer {
    fn new(min_size: u8) -> Self {
        LsbBuffer {
            code_size: min_size + 1,
            buffer: 0,
            bits_in_buffer: 0,
        }
    }

    fn reset(&mut self, min_size: u8) {
        self.code_size = min_size + 1;
        self.buffer = 0;
        self.bits_in_buffer = 0;
    }

    fn clear(&mut self, min_size: u8) {
        self.code_size = min_size + 1;
    }

    fn buffer_code(&mut self, code: Code) {
        self.buffer |= u64::from(code) << self.bits_in_buffer;
        self.bits_in_buffer += self.code_size;
    }

    fn push_out(&mut self, out: &mut &mut [u8]) -> bool {
        if self.bits_in_buffer + 2 * self.code_size < 64 {
            return false;
        }

        self.flush_out(out)
    }

    fn flush_out(&mut self, out: &mut &mut [u8]) -> bool {
        let want = usize::from(self.bits_in_buffer / 8);
        let count = want.min((*out).len());
        let (bytes, tail) = core::mem::replace(out, &mut []).split_at_mut(count);
        *out = tail;

        for b in bytes {
            *b = (self.buffer & 0x0000_0000_0000_00ff) as u8;
            self.buffer >>= 8;
            self.bits_in_buffer -= 8;
        }

        count < want
    }

    fn buffer_pad(&mut self) {
        let to_byte = self.bits_in_buffer.wrapping_neg() & 0x7;
        self.bits_in_buffer += to_byte;
    }

    fn bump_code_size(&mut self) {
        self.code_size += 1;
    }

    fn max_code(&self) -> Code {
        (1 << self.code_size) - 1
    }

    fn code_size(&self) -> u8 {
        self.code_size
    }
}

impl Tree {
    fn init(&mut self, min_size: u8) {
        // We need a way to represent the state of a currently empty buffer. We use the clear code
        // for this, thus create one complex mapping that leads to the one-char base codes.
        self.keys
            .resize((1 << min_size) + 2, FullKey::NoSuccessor.into());
        self.complex.push(Full {
            char_continuation: [0; 256],
        });
        let map_of_begin = self.complex.last_mut().unwrap();
        for ch in 0u16..256 {
            map_of_begin.char_continuation[usize::from(ch)] = ch;
        }
        self.keys[1 << min_size] = FullKey::Full(0).into();
    }

    fn reset(&mut self, min_size: u8) {
        self.simples.clear();
        self.keys.truncate((1 << min_size) + 2);
        // Keep entry for clear code.
        self.complex.truncate(1);
        // The first complex is not changed..
        for k in self.keys[..(1 << min_size) + 2].iter_mut() {
            *k = FullKey::NoSuccessor.into();
        }
        self.keys[1 << min_size] = FullKey::Full(0).into();
    }

    fn at_key(&self, code: Code, ch: u8) -> Option<Code> {
        let key = self.keys[usize::from(code)];
        match FullKey::from(key) {
            FullKey::NoSuccessor => None,
            FullKey::Simple(idx) => {
                let nexts = &self.simples[usize::from(idx)];
                let successors = nexts
                    .codes
                    .iter()
                    .zip(nexts.chars.iter())
                    .take(usize::from(nexts.count));
                for (&scode, &sch) in successors {
                    if sch == ch {
                        return Some(scode);
                    }
                }

                None
            }
            FullKey::Full(idx) => {
                let full = &self.complex[usize::from(idx)];
                let precode = full.char_continuation[usize::from(ch)];
                if usize::from(precode) < MAX_ENTRIES {
                    Some(precode)
                } else {
                    None
                }
            }
        }
    }

    /// Iterate to the next char.
    /// Return Ok when it was already in the tree or creates a new entry for it and returns Err.
    fn iterate(&mut self, code: Code, ch: u8) -> Result<Code, Code> {
        if let Some(next) = self.at_key(code, ch) {
            Ok(next)
        } else {
            Err(self.append(code, ch))
        }
    }

    fn append(&mut self, code: Code, ch: u8) -> Code {
        let next: Code = self.keys.len() as u16;
        let key = self.keys[usize::from(code)];
        // TODO: with debug assertions, check for non-existence
        match FullKey::from(key) {
            FullKey::NoSuccessor => {
                let new_key = FullKey::Simple(self.simples.len() as u16);
                self.simples.push(Simple::default());
                let simples = self.simples.last_mut().unwrap();
                simples.codes[0] = next;
                simples.chars[0] = ch;
                simples.count = 1;
                self.keys[usize::from(code)] = new_key.into();
            }
            FullKey::Simple(idx) if usize::from(self.simples[usize::from(idx)].count) < SHORT => {
                let nexts = &mut self.simples[usize::from(idx)];
                let nidx = usize::from(nexts.count);
                nexts.chars[nidx] = ch;
                nexts.codes[nidx] = next;
                nexts.count += 1;
            }
            FullKey::Simple(idx) => {
                let new_key = FullKey::Full(self.complex.len() as u16);
                let simples = &self.simples[usize::from(idx)];
                self.complex.push(Full {
                    char_continuation: [Code::max_value(); 256],
                });
                let full = self.complex.last_mut().unwrap();
                for (&pch, &pcont) in simples.chars.iter().zip(simples.codes.iter()) {
                    full.char_continuation[usize::from(pch)] = pcont;
                }
                self.keys[usize::from(code)] = new_key.into();
            }
            FullKey::Full(idx) => {
                let full = &mut self.complex[usize::from(idx)];
                full.char_continuation[usize::from(ch)] = next;
            }
        }
        self.keys.push(FullKey::NoSuccessor.into());
        next
    }
}

impl Default for FullKey {
    fn default() -> Self {
        FullKey::NoSuccessor
    }
}

impl Default for Simple {
    fn default() -> Self {
        Simple {
            codes: [0; SHORT],
            chars: [0; SHORT],
            count: 0,
        }
    }
}

impl From<CompressedKey> for FullKey {
    fn from(CompressedKey(key): CompressedKey) -> Self {
        match (key >> MAX_CODESIZE) & 0xf {
            0 => FullKey::Full(key & 0xfff),
            1 => FullKey::Simple(key & 0xfff),
            _ => FullKey::NoSuccessor,
        }
    }
}

impl From<FullKey> for CompressedKey {
    fn from(full: FullKey) -> Self {
        CompressedKey(match full {
            FullKey::NoSuccessor => 0x2000,
            FullKey::Simple(code) => 0x1000 | code,
            FullKey::Full(code) => code,
        })
    }
}

#[cfg(test)]
mod tests {
    use super::{BitOrder, Encoder, LzwError, LzwStatus};
    use crate::alloc::vec::Vec;
    use crate::decode::Decoder;
    #[cfg(feature = "std")]
    use crate::StreamBuf;

    #[test]
    fn invalid_input_rejected() {
        const BIT_LEN: u8 = 2;
        let ref input = [0, 1 << BIT_LEN /* invalid */, 0];
        let ref mut target = [0u8; 128];
        let mut encoder = Encoder::new(BitOrder::Msb, BIT_LEN);

        encoder.finish();
        // We require simulation of normality, that is byte-for-byte compression.
        let result = encoder.encode_bytes(input, target);
        assert!(if let Err(LzwError::InvalidCode) = result.status {
            true
        } else {
            false
        });
        assert_eq!(result.consumed_in, 1);

        let fixed = encoder.encode_bytes(&[1, 0], &mut target[result.consumed_out..]);
        assert!(if let Ok(LzwStatus::Done) = fixed.status {
            true
        } else {
            false
        });
        assert_eq!(fixed.consumed_in, 2);

        // Okay, now test we actually fixed it.
        let ref mut compare = [0u8; 4];
        let mut todo = &target[..result.consumed_out + fixed.consumed_out];
        let mut free = &mut compare[..];
        let mut decoder = Decoder::new(BitOrder::Msb, BIT_LEN);

        // Decode with up to 16 rounds, far too much but inconsequential.
        for _ in 0..16 {
            if decoder.has_ended() {
                break;
            }

            let result = decoder.decode_bytes(todo, free);
            assert!(result.status.is_ok());
            todo = &todo[result.consumed_in..];
            free = &mut free[result.consumed_out..];
        }

        let remaining = { free }.len();
        let len = compare.len() - remaining;
        assert_eq!(todo, &[]);
        assert_eq!(compare[..len], [0, 1, 0]);
    }

    #[test]
    #[should_panic]
    fn invalid_code_size_low() {
        let _ = Encoder::new(BitOrder::Msb, 1);
    }

    #[test]
    #[should_panic]
    fn invalid_code_size_high() {
        let _ = Encoder::new(BitOrder::Msb, 14);
    }

    fn make_decoded() -> Vec<u8> {
        const FILE: &'static [u8] =
            include_bytes!(concat!(env!("CARGO_MANIFEST_DIR"), "/Cargo.lock"));
        return Vec::from(FILE);
    }

    #[test]
    #[cfg(feature = "std")]
    fn into_stream_buffer_no_alloc() {
        let encoded = make_decoded();
        let mut encoder = Encoder::new(BitOrder::Msb, 8);

        let mut output = vec![];
        let mut buffer = [0; 512];
        let mut istream = encoder.into_stream(&mut output);
        istream.set_buffer(&mut buffer[..]);
        istream.encode(&encoded[..]).status.unwrap();

        match istream.buffer {
            Some(StreamBuf::Borrowed(_)) => {}
            None => panic!("Decoded without buffer??"),
            Some(StreamBuf::Owned(_)) => panic!("Unexpected buffer allocation"),
        }
    }

    #[test]
    #[cfg(feature = "std")]
    fn into_stream_buffer_small_alloc() {
        struct WriteTap<W: std::io::Write>(W);
        const BUF_SIZE: usize = 512;

        impl<W: std::io::Write> std::io::Write for WriteTap<W> {
            fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
                assert!(buf.len() <= BUF_SIZE);
                self.0.write(buf)
            }
            fn flush(&mut self) -> std::io::Result<()> {
                self.0.flush()
            }
        }

        let encoded = make_decoded();
        let mut encoder = Encoder::new(BitOrder::Msb, 8);

        let mut output = vec![];
        let mut istream = encoder.into_stream(WriteTap(&mut output));
        istream.set_buffer_size(512);
        istream.encode(&encoded[..]).status.unwrap();

        match istream.buffer {
            Some(StreamBuf::Owned(vec)) => assert!(vec.len() <= BUF_SIZE),
            Some(StreamBuf::Borrowed(_)) => panic!("Unexpected borrowed buffer, where from?"),
            None => panic!("Decoded without buffer??"),
        }
    }

    #[test]
    #[cfg(feature = "std")]
    fn reset() {
        let encoded = make_decoded();
        let mut encoder = Encoder::new(BitOrder::Msb, 8);
        let mut reference = None;

        for _ in 0..2 {
            let mut output = vec![];
            let mut buffer = [0; 512];
            let mut istream = encoder.into_stream(&mut output);
            istream.set_buffer(&mut buffer[..]);
            istream.encode_all(&encoded[..]).status.unwrap();

            encoder.reset();
            if let Some(reference) = &reference {
                assert_eq!(output, *reference);
            } else {
                reference = Some(output);
            }
        }
    }
}