Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
use crate::storage::Storage;
use crate::{
    Allocator, Bidiagonal, Cholesky, ComplexField, DefaultAllocator, Dim, DimDiff, DimMin,
    DimMinimum, DimSub, FullPivLU, Hessenberg, Matrix, Schur, SymmetricEigen, SymmetricTridiagonal,
    LU, QR, SVD, U1,
};

/// # Rectangular matrix decomposition
///
/// This section contains the methods for computing some common decompositions of rectangular
/// matrices with real or complex components. The following are currently supported:
///
/// | Decomposition            | Factors             | Details |
/// | -------------------------|---------------------|--------------|
/// | QR                       | `Q * R`             | `Q` is an unitary matrix, and `R` is upper-triangular. |
/// | LU with partial pivoting | `P⁻¹ * L * U`       | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` is a permutation matrix. |
/// | LU with full pivoting    | `P⁻¹ * L * U ~ Q⁻¹` | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` and `Q` are permutation matrices. |
/// | SVD                      | `U * Σ * Vᵀ`        | `U` and `V` are two orthogonal matrices and `Σ` is a diagonal matrix containing the singular values. |
impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
    /// Computes the bidiagonalization using householder reflections.
    pub fn bidiagonalize(self) -> Bidiagonal<N, R, C>
    where
        R: DimMin<C>,
        DimMinimum<R, C>: DimSub<U1>,
        DefaultAllocator: Allocator<N, R, C>
            + Allocator<N, C>
            + Allocator<N, R>
            + Allocator<N, DimMinimum<R, C>>
            + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
    {
        Bidiagonal::new(self.into_owned())
    }

    /// Computes the LU decomposition with full pivoting of `matrix`.
    ///
    /// This effectively computes `P, L, U, Q` such that `P * matrix * Q = LU`.
    pub fn full_piv_lu(self) -> FullPivLU<N, R, C>
    where
        R: DimMin<C>,
        DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
    {
        FullPivLU::new(self.into_owned())
    }

    /// Computes the LU decomposition with partial (row) pivoting of `matrix`.
    pub fn lu(self) -> LU<N, R, C>
    where
        R: DimMin<C>,
        DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
    {
        LU::new(self.into_owned())
    }

    /// Computes the QR decomposition of this matrix.
    pub fn qr(self) -> QR<N, R, C>
    where
        R: DimMin<C>,
        DefaultAllocator: Allocator<N, R, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>>,
    {
        QR::new(self.into_owned())
    }

    /// Computes the Singular Value Decomposition using implicit shift.
    pub fn svd(self, compute_u: bool, compute_v: bool) -> SVD<N, R, C>
    where
        R: DimMin<C>,
        DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
        DefaultAllocator: Allocator<N, R, C>
            + Allocator<N, C>
            + Allocator<N, R>
            + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>
            + Allocator<N, DimMinimum<R, C>, C>
            + Allocator<N, R, DimMinimum<R, C>>
            + Allocator<N, DimMinimum<R, C>>
            + Allocator<N::RealField, DimMinimum<R, C>>
            + Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>,
    {
        SVD::new(self.into_owned(), compute_u, compute_v)
    }

    /// Attempts to compute the Singular Value Decomposition of `matrix` using implicit shift.
    ///
    /// # Arguments
    ///
    /// * `compute_u` − set this to `true` to enable the computation of left-singular vectors.
    /// * `compute_v` − set this to `true` to enable the computation of right-singular vectors.
    /// * `eps`       − tolerance used to determine when a value converged to 0.
    /// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
    /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
    /// continues indefinitely until convergence.
    pub fn try_svd(
        self,
        compute_u: bool,
        compute_v: bool,
        eps: N::RealField,
        max_niter: usize,
    ) -> Option<SVD<N, R, C>>
    where
        R: DimMin<C>,
        DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
        DefaultAllocator: Allocator<N, R, C>
            + Allocator<N, C>
            + Allocator<N, R>
            + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>
            + Allocator<N, DimMinimum<R, C>, C>
            + Allocator<N, R, DimMinimum<R, C>>
            + Allocator<N, DimMinimum<R, C>>
            + Allocator<N::RealField, DimMinimum<R, C>>
            + Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>,
    {
        SVD::try_new(self.into_owned(), compute_u, compute_v, eps, max_niter)
    }
}

/// # Square matrix decomposition
///
/// This section contains the methods for computing some common decompositions of square
/// matrices with real or complex components. The following are currently supported:
///
/// | Decomposition            | Factors                   | Details |
/// | -------------------------|---------------------------|--------------|
/// | Hessenberg               | `Q * H * Qᵀ`             | `Q` is a unitary matrix and `H` an upper-Hessenberg matrix. |
/// | Cholesky                 | `L * Lᵀ`                 | `L` is a lower-triangular matrix. |
/// | Schur decomposition      | `Q * T * Qᵀ`             | `Q` is an unitary matrix and `T` a quasi-upper-triangular matrix. |
/// | Symmetric eigendecomposition | `Q ~ Λ ~ Qᵀ`   | `Q` is an unitary matrix, and `Λ` is a real diagonal matrix. |
/// | Symmetric tridiagonalization | `Q ~ T ~ Qᵀ`   | `Q` is an unitary matrix, and `T` is a tridiagonal matrix. |
impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> Matrix<N, D, D, S> {
    /// Attempts to compute the Cholesky decomposition of this matrix.
    ///
    /// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
    /// to be symmetric and only the lower-triangular part is read.
    pub fn cholesky(self) -> Option<Cholesky<N, D>>
    where
        DefaultAllocator: Allocator<N, D, D>,
    {
        Cholesky::new(self.into_owned())
    }

    /// Computes the Hessenberg decomposition of this matrix using householder reflections.
    pub fn hessenberg(self) -> Hessenberg<N, D>
    where
        D: DimSub<U1>,
        DefaultAllocator: Allocator<N, D, D> + Allocator<N, D> + Allocator<N, DimDiff<D, U1>>,
    {
        Hessenberg::new(self.into_owned())
    }

    /// Computes the Schur decomposition of a square matrix.
    pub fn schur(self) -> Schur<N, D>
    where
        D: DimSub<U1>, // For Hessenberg.
        DefaultAllocator: Allocator<N, D, DimDiff<D, U1>>
            + Allocator<N, DimDiff<D, U1>>
            + Allocator<N, D, D>
            + Allocator<N, D>,
    {
        Schur::new(self.into_owned())
    }

    /// Attempts to compute the Schur decomposition of a square matrix.
    ///
    /// If only eigenvalues are needed, it is more efficient to call the matrix method
    /// `.eigenvalues()` instead.
    ///
    /// # Arguments
    ///
    /// * `eps`       − tolerance used to determine when a value converged to 0.
    /// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
    /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
    /// continues indefinitely until convergence.
    pub fn try_schur(self, eps: N::RealField, max_niter: usize) -> Option<Schur<N, D>>
    where
        D: DimSub<U1>, // For Hessenberg.
        DefaultAllocator: Allocator<N, D, DimDiff<D, U1>>
            + Allocator<N, DimDiff<D, U1>>
            + Allocator<N, D, D>
            + Allocator<N, D>,
    {
        Schur::try_new(self.into_owned(), eps, max_niter)
    }

    /// Computes the eigendecomposition of this symmetric matrix.
    ///
    /// Only the lower-triangular part (including the diagonal) of `m` is read.
    pub fn symmetric_eigen(self) -> SymmetricEigen<N, D>
    where
        D: DimSub<U1>,
        DefaultAllocator: Allocator<N, D, D>
            + Allocator<N, DimDiff<D, U1>>
            + Allocator<N::RealField, D>
            + Allocator<N::RealField, DimDiff<D, U1>>,
    {
        SymmetricEigen::new(self.into_owned())
    }

    /// Computes the eigendecomposition of the given symmetric matrix with user-specified
    /// convergence parameters.
    ///
    /// Only the lower-triangular part (including the diagonal) of `m` is read.
    ///
    /// # Arguments
    ///
    /// * `eps`       − tolerance used to determine when a value converged to 0.
    /// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
    /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
    /// continues indefinitely until convergence.
    pub fn try_symmetric_eigen(
        self,
        eps: N::RealField,
        max_niter: usize,
    ) -> Option<SymmetricEigen<N, D>>
    where
        D: DimSub<U1>,
        DefaultAllocator: Allocator<N, D, D>
            + Allocator<N, DimDiff<D, U1>>
            + Allocator<N::RealField, D>
            + Allocator<N::RealField, DimDiff<D, U1>>,
    {
        SymmetricEigen::try_new(self.into_owned(), eps, max_niter)
    }

    /// Computes the tridiagonalization of this symmetric matrix.
    ///
    /// Only the lower-triangular part (including the diagonal) of `m` is read.
    pub fn symmetric_tridiagonalize(self) -> SymmetricTridiagonal<N, D>
    where
        D: DimSub<U1>,
        DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
    {
        SymmetricTridiagonal::new(self.into_owned())
    }
}