1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
use crate::math::{Isometry, Point};
use crate::query::algorithms::{gjk, CSOPoint};
use crate::query::{PointQuery, PointQueryWithLocation};
use crate::shape::{
    Segment, SegmentPointLocation, Tetrahedron, TetrahedronPointLocation, Triangle,
    TrianglePointLocation,
};
use na::{self, RealField};

/// A simplex of dimension up to 3 that uses Voronoï regions for computing point projections.
#[derive(Clone, Debug)]
pub struct VoronoiSimplex<N: RealField> {
    prev_vertices: [usize; 4],
    prev_proj: [N; 3],
    prev_dim: usize,

    vertices: [CSOPoint<N>; 4],
    proj: [N; 3],
    dim: usize,
}

impl<N: RealField> VoronoiSimplex<N> {
    /// Creates a new empty simplex.
    pub fn new() -> VoronoiSimplex<N> {
        VoronoiSimplex {
            prev_vertices: [0, 1, 2, 3],
            prev_proj: [N::zero(); 3],
            prev_dim: 0,
            vertices: [CSOPoint::origin(); 4],
            proj: [N::zero(); 3],
            dim: 0,
        }
    }

    /// Swap two vertices of this simplex.
    pub fn swap(&mut self, i1: usize, i2: usize) {
        self.vertices.swap(i1, i2);
        self.prev_vertices.swap(i1, i2);
    }

    /// Resets this simplex to a single point.
    pub fn reset(&mut self, pt: CSOPoint<N>) {
        self.dim = 0;
        self.prev_dim = 0;
        self.vertices[0] = pt;
    }

    /// Add a point to this simplex.
    pub fn add_point(&mut self, pt: CSOPoint<N>) -> bool {
        self.prev_dim = self.dim;
        self.prev_proj = self.proj;
        self.prev_vertices = [0, 1, 2, 3];

        match self.dim {
            0 => {
                if (self.vertices[0] - pt).norm_squared() < gjk::eps_tol() {
                    return false;
                }
            }
            1 => {
                let ab = self.vertices[1] - self.vertices[0];
                let ac = pt - self.vertices[0];

                if ab.cross(&ac).norm_squared() < gjk::eps_tol() {
                    return false;
                }
            }
            2 => {
                let ab = self.vertices[1] - self.vertices[0];
                let ac = self.vertices[2] - self.vertices[0];
                let ap = pt - self.vertices[0];
                let n = ab.cross(&ac).normalize();

                if n.dot(&ap).abs() < gjk::eps_tol() {
                    return false;
                }
            }
            _ => unreachable!(),
        }

        self.dim += 1;
        self.vertices[self.dim] = pt;
        return true;
    }

    /// Retrieves the barycentric coordinate associated to the `i`-th by the last call to `project_origin_and_reduce`.
    pub fn proj_coord(&self, i: usize) -> N {
        assert!(i <= self.dim, "Index out of bounds.");
        self.proj[i]
    }

    /// The i-th point of this simplex.
    pub fn point(&self, i: usize) -> &CSOPoint<N> {
        assert!(i <= self.dim, "Index out of bounds.");
        &self.vertices[i]
    }

    /// Retrieves the barycentric coordinate associated to the `i`-th before the last call to `project_origin_and_reduce`.
    pub fn prev_proj_coord(&self, i: usize) -> N {
        assert!(i <= self.prev_dim, "Index out of bounds.");
        self.prev_proj[i]
    }

    /// The i-th point of the simplex before the last call to `projet_origin_and_reduce`.
    pub fn prev_point(&self, i: usize) -> &CSOPoint<N> {
        assert!(i <= self.prev_dim, "Index out of bounds.");
        &self.vertices[self.prev_vertices[i]]
    }

    /// Projets the origin on the boundary of this simplex and reduces `self` the smallest subsimplex containing the origin.
    ///
    /// Retruns the result of the projection or Point::origin() if the origin lies inside of the simplex.
    /// The state of the samplex before projection is saved, and can be retrieved using the methods prefixed
    /// by `prev_`.
    pub fn project_origin_and_reduce(&mut self) -> Point<N> {
        if self.dim == 0 {
            self.proj[0] = N::one();
            self.vertices[0].point
        } else if self.dim == 1 {
            // FIXME: NLL
            let (proj, location) = {
                let seg = Segment::new(self.vertices[0].point, self.vertices[1].point);
                seg.project_point_with_location(&Isometry::identity(), &Point::origin(), true)
            };

            match location {
                SegmentPointLocation::OnVertex(0) => {
                    self.proj[0] = N::one();
                    self.dim = 0;
                }
                SegmentPointLocation::OnVertex(1) => {
                    self.swap(0, 1);
                    self.proj[0] = N::one();
                    self.dim = 0;
                }
                SegmentPointLocation::OnEdge(coords) => {
                    self.proj[0] = coords[0];
                    self.proj[1] = coords[1];
                }
                _ => unreachable!(),
            }

            proj.point
        } else if self.dim == 2 {
            // FIXME: NLL
            let (proj, location) = {
                let tri = Triangle::new(
                    self.vertices[0].point,
                    self.vertices[1].point,
                    self.vertices[2].point,
                );
                tri.project_point_with_location(&Isometry::identity(), &Point::origin(), true)
            };

            match location {
                TrianglePointLocation::OnVertex(i) => {
                    self.swap(0, i);
                    self.proj[0] = N::one();
                    self.dim = 0;
                }
                TrianglePointLocation::OnEdge(0, coords) => {
                    self.proj[0] = coords[0];
                    self.proj[1] = coords[1];
                    self.dim = 1;
                }
                TrianglePointLocation::OnEdge(1, coords) => {
                    self.swap(0, 2);
                    self.proj[0] = coords[1];
                    self.proj[1] = coords[0];
                    self.dim = 1;
                }
                TrianglePointLocation::OnEdge(2, coords) => {
                    self.swap(1, 2);
                    self.proj[0] = coords[0];
                    self.proj[1] = coords[1];
                    self.dim = 1;
                }
                TrianglePointLocation::OnFace(_, coords) => {
                    self.proj = coords;
                }
                _ => {}
            }

            proj.point
        } else {
            assert!(self.dim == 3);
            // FIXME: NLL
            let (proj, location) = {
                let tetr = Tetrahedron::new(
                    self.vertices[0].point,
                    self.vertices[1].point,
                    self.vertices[2].point,
                    self.vertices[3].point,
                );
                tetr.project_point_with_location(&Isometry::identity(), &Point::origin(), true)
            };

            match location {
                TetrahedronPointLocation::OnVertex(i) => {
                    self.swap(0, i);
                    self.proj[0] = N::one();
                    self.dim = 0;
                }
                TetrahedronPointLocation::OnEdge(i, coords) => {
                    match i {
                        0 => {
                            // ab
                        }
                        1 => {
                            // ac
                            self.swap(1, 2)
                        }
                        2 => {
                            // ad
                            self.swap(1, 3)
                        }
                        3 => {
                            // bc
                            self.swap(0, 2)
                        }
                        4 => {
                            // bd
                            self.swap(0, 3)
                        }
                        5 => {
                            // cd
                            self.swap(0, 2);
                            self.swap(1, 3);
                        }
                        _ => unreachable!(),
                    }

                    match i {
                        0 | 1 | 2 | 5 => {
                            self.proj[0] = coords[0];
                            self.proj[1] = coords[1];
                        }
                        3 | 4 => {
                            self.proj[0] = coords[1];
                            self.proj[1] = coords[0];
                        }
                        _ => unreachable!(),
                    }
                    self.dim = 1;
                }
                TetrahedronPointLocation::OnFace(i, coords) => {
                    match i {
                        0 => {
                            // abc
                            self.proj = coords;
                        }
                        1 => {
                            // abd
                            self.vertices[2] = self.vertices[3];
                            self.proj = coords;
                        }
                        2 => {
                            // acd
                            self.vertices[1] = self.vertices[3];
                            self.proj[0] = coords[0];
                            self.proj[1] = coords[2];
                            self.proj[2] = coords[1];
                        }
                        3 => {
                            // bcd
                            self.vertices[0] = self.vertices[3];
                            self.proj[0] = coords[2];
                            self.proj[1] = coords[0];
                            self.proj[2] = coords[1];
                        }
                        _ => unreachable!(),
                    }
                    self.dim = 2;
                }
                _ => {}
            }

            proj.point
        }
    }

    /// Compute the projection of the origin on the boundary of this simplex.
    pub fn project_origin(&mut self) -> Point<N> {
        if self.dim == 0 {
            self.vertices[0].point
        } else if self.dim == 1 {
            let seg = Segment::new(self.vertices[0].point, self.vertices[1].point);
            seg.project_point(&Isometry::identity(), &Point::origin(), true)
                .point
        } else if self.dim == 2 {
            let tri = Triangle::new(
                self.vertices[0].point,
                self.vertices[1].point,
                self.vertices[2].point,
            );
            tri.project_point(&Isometry::identity(), &Point::origin(), true)
                .point
        } else {
            let tetr = Tetrahedron::new(
                self.vertices[0].point,
                self.vertices[1].point,
                self.vertices[2].point,
                self.vertices[3].point,
            );
            tetr.project_point(&Isometry::identity(), &Point::origin(), true)
                .point
        }
    }

    /// Tests if the given point is already a vertex of this simplex.
    pub fn contains_point(&self, pt: &Point<N>) -> bool {
        for i in 0..self.dim + 1 {
            if self.vertices[i].point == *pt {
                return true;
            }
        }

        false
    }

    /// The dimension of the smallest subspace that can contain this simplex.
    pub fn dimension(&self) -> usize {
        self.dim
    }

    /// The dimension of the simplex before the last call to `project_origin_and_reduce`.
    pub fn prev_dimension(&self) -> usize {
        self.prev_dim
    }

    /// The maximum squared length of the vertices of this simplex.
    pub fn max_sq_len(&self) -> N {
        let mut max_sq_len = na::zero();

        for i in 0..self.dim + 1 {
            let norm = self.vertices[i].point.coords.norm_squared();

            if norm > max_sq_len {
                max_sq_len = norm
            }
        }

        max_sq_len
    }

    /// Apply a function to all the vertices of this simplex.
    pub fn modify_pnts(&mut self, f: &dyn Fn(&mut CSOPoint<N>)) {
        for i in 0..self.dim + 1 {
            f(&mut self.vertices[i])
        }
    }
}