1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
use gl::types::*;
use gl;
use std::mem;
#[cfg(not(feature="webgl"))]
use std::slice;
use std::marker::PhantomData;
use ::Result;
use ::Error;
use super::traits::*;
use super::map::*;
use super::shared_storage::SharedBufferStorage;
use super::range::Range;
use std::ops::Range as StdRange;
use std::os::raw::c_void;
use std::cell::RefCell;

/// Inmmutable buffer object allocated with gl(Named)BufferStorage
///
/// Inmmutability here refers to the same concept OpenGL understands by it. The data in the buffer
/// can still be modified but it can't be reallocated
#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
#[derive(Debug)]
pub struct BufferStorage<T>{
    pub(super) backend: Box<dyn Backend>,
    pub(super) len: usize,
    pub(super) reserved: usize,
    pub(super) marker: PhantomData<T>,
    pub(super) creation_flags: GLbitfield,
    pub(super) persistent_map_token: RefCell<Option<()>>,
}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<T> PartialEq for BufferStorage<T> {
    fn eq(&self, other: &Self) -> bool {
        self.backend.id() == other.backend.id()
    }
}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<T> Eq for BufferStorage<T> {}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<T: 'static> BufferStorage<T>{

    // /// Binds the buffer to the parameter target
    // ///
    // /// glin aims to be bindless but certain operations still require binding
    // pub fn bind(&self, target: GLenum){
	// 	self.backend.bind(target)
    // }

    // /// Unbinds the buffer from the parameter target
    // ///
    // /// glin aims to be bindless but certain operations still require binding
    // pub fn unbind(&self, target: GLenum){
	// 	self.backend.unbind(target)
    // }

    // /// Binds the buffer to the parameter indexed target
    // ///
    // /// glin aims to be bindless but certain operations still require binding
    // pub fn bind_base(&self, target: GLenum, index: GLuint){
	// 	self.backend.bind_base(target, index)
    // }

    // /// Unbinds the buffer to the parameter indexed target
    // ///
    // /// glin aims to be bindless but certain operations still require binding
    // pub fn unbind_base(&self, target: GLenum, index: GLuint){
	// 	self.backend.unbind_base(target, index)
    // }

    /// Loads the passed data at the beginning of the buffer
    ///
    /// Will panic if the buffer is not big enough or not allocated at all
    ///
    /// see: gl(Named)BufferSubData
    pub fn update(&mut self, data: &[T]){
        assert!(data.len() <= self.reserved);
        let size = data.len() * mem::size_of::<T>();
        unsafe{
            self.backend.update( data.as_ptr() as *const c_void, size, 0);
        }
        self.len = data.len();
    }

    /// Maps a buffer object's data store
    ///
    /// Pass a closure that receives the mapped buffer to access it
    ///
    /// see glMapBuffer
    pub fn map_read(&mut self, flags: MapReadFlags) -> Result<MapRead<T, Self>>{
        if self.is_read_map() {
            if self.is_persistant() && self.persistent_map_token.borrow().is_none(){
                return Err(Error::new(::ErrorKind::MapError, "Buffer already persistently mapped"))
            }
            let start = self.start() * mem::size_of::<T>();
            let len = self.len() * mem::size_of::<T>();
            let data = unsafe{ self.backend.map_range(start as isize, len as isize, gl::MAP_READ_BIT | flags.bits()) };
            if data.is_null(){
                Err(Error::new(::ErrorKind::MapError, None))
            }else{
                unsafe{
                    let slice = slice::from_raw_parts(data as *const T, self.reserved); // TODO: Map as len for read?
                    Ok(MapRead{
                        map: slice,
                        buffer: self,
                    })
                }
            }
        }else{
            Err(Error::new(::ErrorKind::MapError, "Can't map for read since storage was created without gl::MAP_READ_BIT"))
        }
    }

    /// Maps a buffer object's data store
    ///
    /// Pass a closure that receives the mapped buffer to access it
    ///
    /// see glMapBuffer
    pub fn map_write(&mut self, flags: MapWriteFlags) -> Result<MapWrite<T,Self>>{
        if self.is_write_map(){
            if self.is_persistant() && self.persistent_map_token.borrow().is_none(){
                return Err(Error::new(::ErrorKind::MapError, "Buffer already persistently mapped"))
            }
            let start = self.start() * mem::size_of::<T>();
            let len = self.len() * mem::size_of::<T>();
            let data = unsafe{ self.backend.map_range(start as isize, len as isize, gl::MAP_WRITE_BIT | flags.bits()) };
            if data.is_null(){
                Err(Error::new(::ErrorKind::MapError, None))
            }else{
                unsafe{
                    let slice = slice::from_raw_parts_mut(data as *mut T, self.reserved);
                    Ok(MapWrite{
                        map: slice,
                        dropper: MapDropper{buffer: self},
                    })
                }
            }
        }else{
            Err(Error::new(::ErrorKind::MapError, "Can't map for write since storage was created without gl::MAP_WRITE_BIT"))
        }
    }

    /// Maps a buffer object's data store
    ///
    /// Pass a closure that receives the mapped buffer to access it
    ///
    /// see glMapBuffer
    pub fn map_read_write(&mut self, flags: MapReadWriteFlags) -> Result<MapReadWrite<T,Self>>{
        if !self.is_read_map(){
            return Err(Error::new(::ErrorKind::MapError, "Can't map for read since storage was created without gl::MAP_READ_BIT"));
        }
        if !self.is_write_map(){
            return Err(Error::new(::ErrorKind::MapError, "Can't map for write since storage was created without gl::MAP_WRITE_BIT"));
        }
        if self.is_persistant() && self.persistent_map_token.borrow().is_none(){
            return Err(Error::new(::ErrorKind::MapError, "Buffer already persistently mapped"))
        }
        let start = self.start() * mem::size_of::<T>();
        let len = self.len() * mem::size_of::<T>();
        let data = unsafe{ self.backend.map_range(start as isize, len as isize, gl::MAP_WRITE_BIT | gl::MAP_READ_BIT | flags.bits()) };
        if data.is_null(){
            Err(Error::new(::ErrorKind::MapError, None))
        }else{
            unsafe{
                let slice = slice::from_raw_parts_mut(data as *mut T, self.reserved);
                Ok(MapReadWrite{
                    map: slice,
                    dropper: MapDropper{buffer: self},
                })
            }
        }
    }

    /// Maps a buffer object's data store as a slice
    ///
    /// This operation is unsafe cause the buffer needs to be unmapped manually
    /// so it could be accessed while mapped which is undefined behaviour
    ///
    /// see glMapBuffer
    pub unsafe fn map_read_slice(&mut self, flags: MapReadFlags) -> Result<&[T]>{
        if self.is_read_map() {
            if self.is_persistant() && self.persistent_map_token.borrow().is_none(){
                return Err(Error::new(::ErrorKind::MapError, "Buffer already persistently mapped"))
            }
            let start = self.start() * mem::size_of::<T>();
            let len = self.len() * mem::size_of::<T>();
            let data = self.backend.map_range(start as isize, len as isize, gl::MAP_READ_BIT | flags.bits());
            if data.is_null(){
                Err(Error::new(::ErrorKind::MapError, None))
            }else{
                let slice = slice::from_raw_parts(data as *const T, self.reserved); // TODO: Map as len for read?
                Ok(slice)
            }
        }else{
            Err(Error::new(::ErrorKind::MapError, "Can't map for read since storage was created without gl::MAP_READ_BIT"))
        }
    }

    /// Maps a buffer object's data store as a slice
    ///
    /// This operation is unsafe cause the buffer needs to be unmapped manually
    /// so it could be accessed while mapped which is undefined behaviour
    ///
    /// see glMapBuffer
    pub unsafe fn map_write_slice(&mut self, flags: MapWriteFlags) -> Result<&mut [T]>{
        if self.is_write_map(){
            if self.is_persistant() && self.persistent_map_token.borrow().is_none(){
                return Err(Error::new(::ErrorKind::MapError, "Buffer already persistently mapped"))
            }
            let start = self.start() * mem::size_of::<T>();
            let len = self.len() * mem::size_of::<T>();
            let data = self.backend.map_range(start as isize, len as isize, gl::MAP_WRITE_BIT | flags.bits());
            if data.is_null(){
                Err(Error::new(::ErrorKind::MapError, None))
            }else{
                let slice = slice::from_raw_parts_mut(data as *mut T, self.reserved);
                Ok(slice)
            }
        }else{
            Err(Error::new(::ErrorKind::MapError, "Can't map for write since storage was created without gl::MAP_WRITE_BIT"))
        }
    }

    /// Maps a buffer object's data store as a slice
    ///
    /// This operation is unsafe cause the buffer needs to be unmapped manually
    /// so it could be accessed while mapped which is undefined behaviour
    ///
    /// see glMapBuffer
    pub unsafe fn map_read_write_slice(&mut self, flags: MapReadWriteFlags) -> Result<&mut [T]>{
        if !self.is_read_map(){
            return Err(Error::new(::ErrorKind::MapError, "Can't map for read since storage was created without gl::MAP_READ_BIT"));
        }
        if !self.is_write_map(){
            return Err(Error::new(::ErrorKind::MapError, "Can't map for write since storage was created without gl::MAP_WRITE_BIT"));
        }
        if self.is_persistant() && self.persistent_map_token.borrow().is_none(){
            return Err(Error::new(::ErrorKind::MapError, "Buffer already persistently mapped"))
        }
        let start = self.start() * mem::size_of::<T>();
        let len = self.len() * mem::size_of::<T>();
        let data = self.backend.map_range(start as isize, len as isize, gl::MAP_WRITE_BIT | gl::MAP_READ_BIT | flags.bits());
        if data.is_null(){
            Err(Error::new(::ErrorKind::MapError, None))
        }else{
            let slice = slice::from_raw_parts_mut(data as *mut T, self.reserved);
            Ok(slice)
        }
    }

    pub unsafe fn unmap(&mut self){
        if self.is_persistant() && self.persistent_map_token.borrow().is_none() {
            *self.persistent_map_token.borrow_mut() = Some(())
        }
        self.backend.unmap();
    }

    /// On creation the storage was passed the GL_MAP_PERSISTENT_BIT
    ///
    /// The client may request that the server read from or write to the buffer
    /// while it is mapped. The client's pointer to the data store remains valid
    /// so long as the data store is mapped, even during execution of drawing or
    /// dispatch commands.
    ///
    /// If the storage is not persistent, calls to persistent_map_* will fail
    pub fn is_persistant(&self) -> bool {
        self.creation_flags & gl::MAP_PERSISTENT_BIT != 0
    }

    /// On creation the storage was passed the GL_MAP_READ_BIT
    ///
    /// The data store may be mapped by the client for read access and a pointer
    /// in the client's address space obtained that may be read from.
    ///
    /// If the storage is not read map, calls to any read map will fail
    pub fn is_read_map(&self) -> bool {
        self.creation_flags & gl::MAP_READ_BIT != 0
    }

    /// On creation the storage was passed the GL_MAP_WRITE_BIT
    ///
    /// The data store may be mapped by the client for write access and a pointer
    /// in the client's address space obtained that may be written through.
    ///
    /// If the storage is not read write, calls to any write map will fail
    pub fn is_write_map(&self) -> bool {
        self.creation_flags & gl::MAP_WRITE_BIT != 0
    }

    /// On creation the storage was passed the GL_DYNAMIC_STORAGE_BIT
    ///
    /// The contents of the data store may be updated after creation through calls to
    /// update (glSubBufferData). If this bit is not set, the buffer content may not be
    /// directly updated by the client. The data argument may be used to specify the initial
    /// content of the buffer's data store regardless of the presence of the GL_DYNAMIC_STORAGE_BIT.
    /// Regardless of the presence of this bit, buffers may always be updated with
    /// server-side calls such as copy (glCopyBufferSubData) and clear (glClearBufferSubData).
    pub fn is_dynamic_storage(&self) -> bool {
        self.creation_flags & gl::DYNAMIC_STORAGE_BIT != 0
    }

    /// On creation the storage was passed the gL_MAP_COHERENT_BIT
    ///
    /// Shared access to buffers that are simultaneously mapped for client access
    /// and are used by the server will be coherent, so long as that mapping is performed using
    /// glMapBufferRange. That is, data written to the store by either the client or server
    /// will be immediately visible to the other with no further action taken by the application.
    /// In particular,
    ///
    /// - If GL_MAP_COHERENT_BIT is not set and the client performs a write followed by a call
    /// to the glMemoryBarrier command with the GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT set, then
    /// in subsequent commands the server will see the writes.
    ///
    /// - If GL_MAP_COHERENT_BIT is set and the client performs a write, then in subsequent
    /// commands the server will see the writes.
    ///
    /// - If GL_MAP_COHERENT_BIT is not set and the server performs a write, the application
    /// must call glMemoryBarrier with the GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT set and then
    /// call glFenceSync with GL_SYNC_GPU_COMMANDS_COMPLETE (or glFinish). Then the CPU will
    /// see the writes after the sync is complete.
    ///
    /// - If GL_MAP_COHERENT_BIT is set and the server does a write, the app must call FenceSync
    /// with GL_SYNC_GPU_COMMANDS_COMPLETE (or glFinish). Then the CPU will see the writes
    /// after the sync is complete.
    pub fn is_coherent(&self) -> bool {
        self.creation_flags & gl::MAP_COHERENT_BIT != 0
    }

    /// Persistently maps a buffer object's data store
    ///
    /// If the storage wasn't created as pesistent this call will fail.
    ///
    /// Persistent maps can be send and shared with other threads but need to be dropped from
    /// the same thread they were created from. The destructor will panic otherwise.
    ///
    /// A common pattern to do this is to return the map as the return value of a thread and
    /// receive it by explicitly joining the thread using it's join handle from the original thread.
    ///
    /// see glMapBuffer with GL_MAP_PERSISTENT_BIT
    pub fn map_persistent_read(&self, flags: MapReadFlags) -> Result<MapPersistentRead<T, &Self>>{
        unsafe{
            self.unsafe_map_range_persistent_read(None, flags)
                .map(|map| MapPersistentRead::new(
                    map,
                    self
                ))
        }
    }

    /// Moves the buffer into a persistent map
    ///
    /// If the storage wasn't created as pesistent this call will fail
    ///
    /// Persistent maps can be send and shared with other threads but need to be dropped from
    /// the same thread they were created from. The destructor will panic otherwise.
    ///
    /// A common pattern to do this is to return the map as the return value of a thread and
    /// receive it by explicitly joining the thread using it's join handle from the original thread.
    ///
    /// see glMapBuffer with GL_MAP_PERSISTENT_BIT
    pub fn into_map_persistent_read(self, flags: MapReadFlags) -> Result<MapPersistentRead<T, Self>>{
        unsafe{
            self.unsafe_map_range_persistent_read(None, flags)
                .map(|map| MapPersistentRead::new(
                    map,
                    self
                ))
        }
    }

    /// Persistently maps a buffer object's data store
    ///
    /// If the storage wasn't created as pesistent this call will fail
    ///
    /// Persistent maps can be send and shared with other threads but need to be dropped from
    /// the same thread they were created from. The destructor will panic otherwise.
    ///
    /// A common pattern to do this is to return the map as the return value of a thread and
    /// receive it by explicitly joining the thread using it's join handle from the original thread.
    ///
    /// see glMapBuffer with GL_MAP_PERSISTENT_BIT
    pub fn map_persistent_write(&self, flags: MapWriteFlags) -> Result<MapPersistentWrite<T, &Self>>{
        unsafe{
            self.unsafe_map_range_persistent_write(None, flags)
                .map(|map| MapPersistentWrite::new(map, self))
        }
    }

    /// Moves the buffer into a persistent map
    ///
    /// If the storage wasn't created as pesistent this call will fail
    ///
    /// see glMapBuffer with GL_MAP_PERSISTENT_BIT
    pub fn into_map_persistent_write(self, flags: MapWriteFlags) -> Result<MapPersistentWrite<T, Self>>{
        unsafe{
            self.unsafe_map_range_persistent_write(None, flags)
                .map(|map| MapPersistentWrite::new(map, self))
        }
    }

    /// Persistently maps a buffer object's data store
    ///
    /// If the storage wasn't created as pesistent this call will fail
    ///
    /// Persistent maps can be send and shared with other threads but need to be dropped from
    /// the same thread they were created from. The destructor will panic otherwise.
    ///
    /// A common pattern to do this is to return the map as the return value of a thread and
    /// receive it by explicitly joining the thread using it's join handle from the original thread.
    ///
    /// see glMapBuffer with GL_MAP_PERSISTENT_BIT
    pub fn map_persistent_read_write(&self, flags: MapReadWriteFlags) -> Result<MapPersistentReadWrite<T, &Self>>{
        unsafe{
            self.unsafe_map_range_persistent_read_write(None, flags)
                .map(|map| MapPersistentReadWrite::new(
                    map,
                    self
                ))
        }
    }

    /// Moves the buffer into a persistent map
    ///
    /// If the storage wasn't created as pesistent this call will fail
    ///
    /// Persistent maps can be send and shared with other threads but need to be dropped from
    /// the same thread they were created from. The destructor will panic otherwise.
    ///
    /// A common pattern to do this is to return the map as the return value of a thread and
    /// receive it by explicitly joining the thread using it's join handle from the original thread.
    ///
    /// see glMapBuffer with GL_MAP_PERSISTENT_BIT
    pub fn into_map_persistent_read_write(self, flags: MapReadWriteFlags) -> Result<MapPersistentReadWrite<T, Self>>{
        unsafe{
            self.unsafe_map_range_persistent_read_write(None, flags)
                .map(|map| MapPersistentReadWrite::new(
                    map,
                    self
                ))
        }
    }

    /// Copy one buffer into another
    pub fn copy_to<U, B:BufferRange<U> + WithBackendMut>(&self, dst: &mut B){
        let offset = dst.start() * (dst as &B).stride();
        dst.with_backend_mut(|dst_backend|
            self.backend.copy_to(dst_backend, 0, offset, self.capacity_bytes())
        );
    }

    /// Number of elements on the last update
    pub fn len(&self) -> usize{
        self.len
    }

    /// If there's no elements loaded in the buffer
    ///
    /// This is len == 0 not capacity == 0
    pub fn is_empty(&self) -> bool{
        self.len != 0
    }

    /// Allocated capacity of the buffer in number of elements
    pub fn capacity(&self) -> usize{
        self.reserved
    }

    /// Total bytes on the last update
    pub fn bytes(&self) -> usize{
        self.len * mem::size_of::<T>()
    }

    /// Total capcacity of the buffer in bytes
    pub fn capacity_bytes(&self) -> usize{
        self.reserved * mem::size_of::<T>()
    }

    /// OpenGL id
    pub fn id(&self) -> GLuint{
        self.backend.id()
    }

    /// Stride of the buffer type
    pub fn stride(&self) -> usize{
        mem::size_of::<T>()
    }

    /// Consume into a shared buffer
    pub fn into_shared(self) -> SharedBufferStorage<T>{
        SharedBufferStorage::from(self)
    }

    /// Get a range from the buffer
    ///
    /// Useful to do operations on portions of the buffer
    ///
    /// Panics if the range is out of bounds
    pub fn range<R: InputRange>(&self, range: R) -> Range<T, BufferStorage<T>, &BufferStorage<T>>{
        Range{
            buffer: self,
            range: range.to_range(self),
            marker_type: PhantomData,
            marker_buffer: PhantomData,
        }
    }

    /// Get a mutable range from the buffer
    ///
    /// Useful to do operations on portions of the buffer
    ///
    /// Panics if the range is out of bounds
    pub fn range_mut<R: InputRange>(&mut self, range: R) -> Range<T, BufferStorage<T>, &mut BufferStorage<T>>{
        Range{
            range: range.to_range(self),
            buffer: self,
            marker_type: PhantomData,
            marker_buffer: PhantomData,
        }
    }

    /// Consumes the buffer into a range
    ///
    /// Panics if the range is out of bounds
    pub fn into_range<R: InputRange>(self, range: R) -> Range<T, BufferStorage<T>, BufferStorage<T>>{
        Range{
            range: range.to_range(&self),
            buffer: self,
            marker_type: PhantomData,
            marker_buffer: PhantomData,
        }
    }
}

impl BufferStorage<u8>{
    pub fn cast<T>(self) -> BufferStorage<T> {
        BufferStorage {
            backend: self.backend,
            len: self.len / mem::size_of::<T>(),
            reserved: self.reserved / mem::size_of::<T>(),
            marker: PhantomData,
            creation_flags: self.creation_flags,
            persistent_map_token: self.persistent_map_token,
        }
    }
}

impl<T> Cast<T> for BufferStorage<u8>{
    type CastTo = BufferStorage<T>;
    fn cast(self) -> BufferStorage<T>{
        BufferStorage {
            backend: self.backend,
            len: self.len / mem::size_of::<T>(),
            reserved: self.reserved / mem::size_of::<T>(),
            marker: PhantomData,
            creation_flags: self.creation_flags,
            persistent_map_token: self.persistent_map_token,
        }
    }
}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<T: 'static> TypedBuffer<T> for BufferStorage<T>{
    fn id(&self) -> GLuint{
        (*self).id()
    }

    fn len(&self) -> usize{
        (*self).len()
    }

    fn capacity(&self) -> usize{
        (*self).capacity()
    }

    fn with_map_read<F: FnMut(&[T])>(&self, flags: MapReadFlags, mut f: F) -> Result<()>{
        if self.is_read_map() {
            let start = self.start() * mem::size_of::<T>();
            let len = self.len() * mem::size_of::<T>();
            let data = unsafe{ self.backend.map_range(start as isize, len as isize, gl::MAP_READ_BIT | flags.bits()) };
            if data.is_null(){
                Err(Error::new(::ErrorKind::MapError, None))
            }else{
                unsafe{
                    let slice = slice::from_raw_parts(data as *const T, self.reserved); // TODO: Map as len for read?
                    f(slice);
                    Ok(())
                }
            }
        }else{
            Err(Error::new(::ErrorKind::MapError, "Can't map for read since storage was created without gl::MAP_READ_BIT"))
        }
    }

    fn copy_to<U,B:BufferRange<U> + WithBackendMut>(&self, dst: &mut B) where Self: Sized{
        (*self).copy_to(dst)
    }

    #[cfg(not(feature="webgl"))]
    unsafe fn unmap(&self){
        self.backend.unmap()
    }
}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<'a, T: 'static> TypedBufferMut<T> for BufferStorage<T> {
    unsafe fn with_map_write<F: FnMut(&mut [T])>(&mut self, flags: MapWriteFlags, mut f: F) -> Result<()>{
        (*self).map_write(flags).map(|mut m| f(m.data_mut()))
    }

    #[cfg(all(not(feature = "gles"), not(feature="webgl")))]
    fn with_map_read_write<F: FnMut(&mut [T])>(&mut self, flags: MapReadWriteFlags, mut f: F) -> Result<()>{
        (*self).map_read_write(flags).map(|mut m| f(m.data_mut()))
    }
}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<T: 'static> BufferRange<T> for BufferStorage<T>{
    fn start(&self) -> usize{
        0
    }

    fn end(&self) -> usize{
        self.len()
    }

    fn into_range<R: InputRange>(self, range: R) -> super::Range<T, Self, Self> where Self: Sized{
        Range{
            range: range.to_range(&self),
            buffer: self,
            marker_type: PhantomData,
            marker_buffer: PhantomData,
        }
    }
}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<T:'static> BufferRangeMut<T> for BufferStorage<T>{
    fn update(&mut self, data: &[T]){
        self.update(data);
    }
}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<T> WithBackend for BufferStorage<T>{
    fn with_backend<F:FnMut(&dyn Backend)->R, R>(&self, mut f:F) -> R{
        f(&*self.backend)
    }
}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<T> WithBackendMut for BufferStorage<T>{
    fn with_backend_mut<F:FnMut(&mut dyn Backend)->R, R>(&mut self, mut f:F) -> R{
        f(&mut *self.backend)
    }
}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<T: 'static> MapRange<T> for BufferStorage<T>{
    fn map_range_read(&mut self, offset: usize, length: usize, flags: MapReadFlags) -> Result<MapRead<T,Self>>{
        if offset + length > self.reserved{
            return Err(Error::new(::ErrorKind::OutOfBounds,None));
        }
        let bytes_offset = offset * mem::size_of::<T>();
        let length_offset = length  * mem::size_of::<T>();
        let flags = gl::MAP_READ_BIT | flags.bits();
        let data = unsafe{ self.backend.map_range(bytes_offset as GLintptr, length_offset as GLsizeiptr, flags) };
        if data.is_null(){
            Err(Error::new(::ErrorKind::MapError,None))
        }else{
            unsafe{
                let slice = slice::from_raw_parts(data as *const T, length); // TODO: Map as len for read?
                Ok(MapRead{
                    map: slice,
                    buffer: self,
                })
            }
        }
    }
}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<T: 'static> MapRangeMut<T> for BufferStorage<T>{
    fn map_range_write(&mut self, offset: usize, length: usize, flags: MapWriteFlags) -> Result<MapWrite<T,Self>>{
        if offset + length > self.reserved{
            return Err(Error::new(::ErrorKind::OutOfBounds,None));
        }
        let bytes_offset = offset * mem::size_of::<T>();
        let length_offset = length  * mem::size_of::<T>();
        let flags = gl::MAP_WRITE_BIT | flags.bits();
        let data = unsafe{ self.backend.map_range(
            bytes_offset as GLintptr,
            length_offset as GLsizeiptr,
            flags) };
        if data.is_null(){
            Err(Error::new(::ErrorKind::MapError,None))
        }else{
            unsafe{
                let slice = slice::from_raw_parts_mut(data as *mut T, length);
                Ok(MapWrite{
                    map: slice,
                    dropper: MapDropper{buffer: self}
                })
            }
        }
    }

    fn map_range_read_write(&mut self, offset: usize, length: usize, flags: MapReadWriteFlags) -> Result<MapReadWrite<T,Self>>{
        if offset + length > self.reserved{
            return Err(Error::new(::ErrorKind::OutOfBounds,None));
        }
        let bytes_offset = offset * mem::size_of::<T>();
        let length_offset = length  * mem::size_of::<T>();
        let flags = gl::MAP_READ_BIT | gl::MAP_WRITE_BIT | flags.bits();
        let data = unsafe{ self.backend.map_range(
            bytes_offset as GLintptr,
            length_offset as GLsizeiptr,
            flags) };
        if data.is_null(){
            Err(Error::new(::ErrorKind::MapError,None))
        }else{
            unsafe{
                let slice = slice::from_raw_parts_mut(data as *mut T, length);
                Ok(MapReadWrite{
                    map: slice,
                    dropper: MapDropper{buffer: self}
                })
            }
        }
    }
}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<T: 'static> WithMapRange<T> for BufferStorage<T>{
    fn with_map_range_read<F: FnMut(&[T])>(&self, offset: usize, length: usize, flags: MapReadFlags, mut f: F) -> Result<()>{
        if offset + length > self.reserved{
            return Err(Error::new(::ErrorKind::OutOfBounds,None));
        }
        let bytes_offset = offset * mem::size_of::<T>();
        let length_offset = length  * mem::size_of::<T>();
        let flags = gl::MAP_READ_BIT | flags.bits();
        let data = unsafe{ self.backend.map_range(bytes_offset as GLintptr, length_offset as GLsizeiptr, flags) };
        if data.is_null(){
            Err(Error::new(::ErrorKind::MapError,None))
        }else{
            unsafe{
                let slice = slice::from_raw_parts(data as *const T, length); // TODO: Map as len for read?
                f(slice);
                Ok(())
            }
        }
    }
}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<T: 'static> WithMapRangeMut<T> for BufferStorage<T>{
    unsafe fn with_map_range_write<F: FnMut(&mut [T])>(&mut self, offset: usize, length: usize, flags: MapWriteFlags, mut f: F) -> Result<()>{
        self.map_range_write(offset, length, flags)
            .map(|mut m| f(m.data_mut()))
    }

    fn with_map_range_read_write<F: FnMut(&mut [T])>(&mut self, offset: usize, length: usize, flags: MapReadWriteFlags, mut f: F) -> Result<()>{
        self.map_range_read_write(offset, length, flags)
            .map(|mut m| f(m.data_mut()))
    }
}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<T: 'static> MapPersistentRange<T> for BufferStorage<T>{
    unsafe fn unsafe_map_range_persistent_read(&self, range: Option<StdRange<usize>>, flags: MapReadFlags) -> Result<&'static [T]>{
        if !self.is_read_map(){
            return Err(Error::new(::ErrorKind::MapError, "Can't map for read since storage was created without gl::MAP_READ_BIT"));
        }
        if !self.is_persistant() {
            return Err(Error::new(::ErrorKind::MapError, "Can't map persistently since storage was created without gl::MAP_PERSISTENT_BIT"));
        }
        if self.persistent_map_token.borrow_mut().take().is_none(){
            return Err(Error::new(::ErrorKind::MapError, "Buffer already mapped"))
        }
        let start = range.clone().map(|range| range.start).unwrap_or(0);
        let len = range.map(|range| range.len()).unwrap_or(self.len());
        if start + len > self.reserved{
            *self.persistent_map_token.borrow_mut() = Some(());
            return Err(Error::new(::ErrorKind::OutOfBounds,None));
        }
        let start_bytes = start * mem::size_of::<T>();
        let len_bytes = len * mem::size_of::<T>();
        let flags = gl::MAP_READ_BIT | gl::MAP_PERSISTENT_BIT | flags.bits();
        let data = self.backend.map_range(start_bytes as isize, len_bytes as isize, flags);
        if data.is_null(){
            *self.persistent_map_token.borrow_mut() = Some(());
            Err(Error::new(::ErrorKind::MapError, None))
        }else{
            Ok(slice::from_raw_parts(data as *const T, len))
        }
    }

    fn map_range_persistent_read(&self, offset: usize, length: usize, flags: MapReadFlags) -> Result<MapPersistentRead<T,&Self>>{
        unsafe{
            self.unsafe_map_range_persistent_read(Some(offset .. offset + length), flags)
                .map(|map| MapPersistentRead::new(
                    map,
                    self
                ))
        }
    }

    fn into_map_range_persistent_read(self, offset: usize, length: usize, flags: MapReadFlags) -> Result<MapPersistentRead<T,Self>>
    where Self: Sized
    {
        unsafe{
            self.unsafe_map_range_persistent_read(Some(offset .. offset + length), flags)
                .map(|map| MapPersistentRead::new(
                    map,
                    self
                ))
        }
    }
}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<T: 'static> MapPersistentRangeMut<T> for BufferStorage<T>{
    unsafe fn unsafe_map_range_persistent_write(&self, range: Option<StdRange<usize>>, flags: MapWriteFlags) -> Result<&'static mut [T]>{
        if !self.is_write_map(){
            return Err(Error::new(::ErrorKind::MapError, "Can't map for write since storage was created without gl::MAP_WRITE_BIT"));
        }
        if !self.is_persistant() {
            return Err(Error::new(::ErrorKind::MapError, "Can't map persistently since storage was created without gl::MAP_PERSISTENT_BIT"));
        }
        if self.persistent_map_token.borrow_mut().take().is_none(){
            return Err(Error::new(::ErrorKind::MapError, "Buffer already mapped"))
        }
        let start = range.clone().map(|range| range.start).unwrap_or(0);
        let len = range.map(|range| range.len()).unwrap_or(self.capacity());
        if start + len > self.reserved{
            *self.persistent_map_token.borrow_mut() = Some(());
            return Err(Error::new(::ErrorKind::OutOfBounds,None));
        }
        let start_bytes = start * mem::size_of::<T>();
        let len_bytes = len * mem::size_of::<T>();
        let flags = gl::MAP_WRITE_BIT | gl::MAP_PERSISTENT_BIT | flags.bits();
        let data = self.backend.map_range(start_bytes as isize, len_bytes as isize, flags);
        if data.is_null(){
            *self.persistent_map_token.borrow_mut() = Some(());
            Err(Error::new(::ErrorKind::MapError, None))
        }else{
            Ok(slice::from_raw_parts_mut(data as *mut T, len))
        }
    }

    unsafe fn unsafe_map_range_persistent_read_write(&self, range: Option<StdRange<usize>>, flags: MapReadWriteFlags) -> Result<&'static mut [T]>{
        if !self.is_read_map(){
            return Err(Error::new(::ErrorKind::MapError, "Can't map for read since storage was created without gl::MAP_READ_BIT"));
        }
        if !self.is_write_map(){
            return Err(Error::new(::ErrorKind::MapError, "Can't map for write since storage was created without gl::MAP_WRITE_BIT"));
        }
        if !self.is_persistant() {
            return Err(Error::new(::ErrorKind::MapError, "Can't map persistently since storage was created without gl::MAP_PERSISTENT_BIT"));
        }
        if self.persistent_map_token.borrow_mut().take().is_none(){
            return Err(Error::new(::ErrorKind::MapError, "Buffer already mapped"))
        }
        let start = range.clone().map(|range| range.start).unwrap_or(0);
        let len = range.map(|range| range.len()).unwrap_or(self.capacity());
        if start + len > self.reserved{
            *self.persistent_map_token.borrow_mut() = Some(());
            return Err(Error::new(::ErrorKind::OutOfBounds,None));
        }
        let start_bytes = start * mem::size_of::<T>();
        let len_bytes = len * mem::size_of::<T>();
        let flags = gl::MAP_WRITE_BIT | gl::MAP_PERSISTENT_BIT | flags.bits();
        let data = self.backend.map_range(start_bytes as isize, len_bytes as isize, flags);
        if data.is_null(){
            *self.persistent_map_token.borrow_mut() = Some(());
            Err(Error::new(::ErrorKind::MapError, None))
        }else{
            Ok(slice::from_raw_parts_mut(data as *mut T, len))
        }
    }

    fn map_range_persistent_write(&self, offset: usize, length: usize, flags: MapWriteFlags) -> Result<MapPersistentWrite<T,&Self>>{
        unsafe{
            self.unsafe_map_range_persistent_write(Some(offset .. offset + length), flags)
                .map(move |map| MapPersistentWrite::new(map, self as &BufferStorage<T>))
        }
    }

    fn map_range_persistent_read_write(&self, offset: usize, length: usize, flags: MapReadWriteFlags) -> Result<MapPersistentReadWrite<T,&Self>>{
        unsafe{
            self.unsafe_map_range_persistent_read_write(Some(offset .. offset + length), flags)
                .map(move |map| MapPersistentReadWrite::new(
                    map,
                    self as &BufferStorage<T>
                ))
        }
    }

    fn into_map_range_persistent_write(self, offset: usize, length: usize, flags: MapWriteFlags) -> Result<MapPersistentWrite<T,Self>>{
        unsafe{
            self.unsafe_map_range_persistent_write(Some(offset .. offset + length), flags)
                .map(|map| MapPersistentWrite::new(map, self))
        }
    }

    fn into_map_range_persistent_read_write(self, offset: usize, length: usize, flags: MapReadWriteFlags) -> Result<MapPersistentReadWrite<T,Self>>{
        unsafe{
            self.unsafe_map_range_persistent_read_write(Some(offset .. offset + length), flags)
                .map(|map| MapPersistentReadWrite::new(
                    map,
                    self
                ))
        }
    }
}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<T: 'static> MapPersistent<T> for BufferStorage<T>{
    fn map_persistent_read(&self, flags: MapReadFlags) -> Result<MapPersistentRead<T,&Self>>{
        (*self).map_persistent_read(flags)
    }

    fn into_map_persistent_read(self, flags: MapReadFlags) -> Result<MapPersistentRead<T,Self>>
    where Self: Sized
    {
        self.into_map_persistent_read(flags)
    }
}

#[cfg(all(not(feature = "gles"), not(feature="webgl")))]
impl<T: 'static> MapPersistentMut<T> for BufferStorage<T>{
    fn map_persistent_write(&self, flags: MapWriteFlags) -> Result<MapPersistentWrite<T,&Self>>{
        (*self).map_persistent_write(flags)
    }

    fn map_persistent_read_write(&self, flags: MapReadWriteFlags) -> Result<MapPersistentReadWrite<T,&Self>>{
        (*self).map_persistent_read_write(flags)
    }

    fn into_map_persistent_write(self, flags: MapWriteFlags) -> Result<MapPersistentWrite<T,Self>>{
        self.into_map_persistent_write(flags)
    }

    fn into_map_persistent_read_write(self, flags: MapReadWriteFlags) -> Result<MapPersistentReadWrite<T,Self>>{
        self.into_map_persistent_read_write(flags)
    }
}


impl<'a, T: 'static> TypedBuffer<T> for &BufferStorage<T>{
    fn id(&self) -> GLuint{
        (*self).id()
    }

    fn len(&self) -> usize{
        (*self).len()
    }

    fn capacity(&self) -> usize{
        (*self).capacity()
    }

    #[cfg(not(feature="webgl"))]
    fn with_map_read<F: FnMut(&[T])>(&self, flags: MapReadFlags, f: F) -> Result<()>{
        (*self).with_map_read(flags, f)
    }

    fn copy_to<U, BB:BufferRange<U> + WithBackendMut>(&self, dst: &mut BB) where Self: Sized{
        (*self).copy_to(dst)
    }

    #[cfg(not(feature="webgl"))]
    unsafe fn unmap(&self){
        (*self).unmap()
    }
}

impl<'a, T: 'static> BufferRange<T> for &BufferStorage<T>{
    fn start(&self) -> usize{
        0
    }

    fn end(&self) -> usize{
        (*self).len()
    }

    fn into_range<R: InputRange>(self, range: R) -> super::Range<T, Self, Self> where Self: Sized{
        Range{
            range: range.to_range(&self),
            buffer: self,
            marker_type: PhantomData,
            marker_buffer: PhantomData,
        }
    }
}