Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
use std::cmp;

use crate::chained_hash_table::{ChainedHashTable, WINDOW_SIZE};

const MAX_MATCH: usize = crate::huffman_table::MAX_MATCH as usize;
#[cfg(test)]
const MIN_MATCH: usize = crate::huffman_table::MIN_MATCH as usize;

/// Get the length of the checked match
/// The function returns number of bytes at and including `current_pos` that are the same as the
/// ones at `pos_to_check`
#[inline]
pub fn get_match_length(data: &[u8], current_pos: usize, pos_to_check: usize) -> usize {
    // Unsafe version using unaligned loads for comparison.
    // Faster when benching the matching function alone,
    // but not as significant when running the full thing.
    /*
        type Comp = u64;

        use std::mem::size_of;

        let max = cmp::min(data.len() - current_pos, MAX_MATCH);
        let mut left = max;
        let s = size_of::<Comp>();

        unsafe {
            let mut cur = data.as_ptr().offset(current_pos as isize);
            let mut tc = data.as_ptr().offset(pos_to_check as isize);
            while left >= s &&
                  (*(cur as *const Comp) == *(tc as *const Comp)) {
                      left -= s;
                      cur = cur.offset(s as isize);
                      tc = tc.offset(s as isize);
                  }
            while left > 0 && *cur == *tc {
                left -= 1;
                cur = cur.offset(1);
                tc = tc.offset(1);
            }
        }

        max - left
    */

    // Slightly faster than naive in single bench.
    // Does not use unaligned loads.
    // let l = cmp::min(MAX_MATCH, data.len() - current_pos);

    // let a = unsafe{&data.get_unchecked(current_pos..current_pos + l)};
    // let b = unsafe{&data.get_unchecked(pos_to_check..)};

    // let mut len = 0;

    // for (l, r) in a
    //     .iter()
    //     .zip(b.iter()) {
    //         if *l == *r {
    //             len += 1;
    //             continue;
    //         } else {
    //             break;
    //         }
    //     }
    // len as usize

    // Naive version
    data[current_pos..]
        .iter()
        .zip(data[pos_to_check..].iter())
        .take(MAX_MATCH)
        .take_while(|&(&a, &b)| a == b)
        .count()
}

/// Try finding the position and length of the longest match in the input data.
/// # Returns
/// (length, distance from position)
/// If no match is found that was better than `prev_length` or at all, or we are at the start,
/// the length value returned will be 2.
///
/// # Arguments:
/// `data`: The data to search in.
/// `hash_table`: Hash table to use for searching.
/// `position`: The position in the data to match against.
/// `prev_length`: The length of the previous `longest_match` check to compare against.
/// `max_hash_checks`: The maximum number of matching hash chain positions to check.
pub fn longest_match(
    data: &[u8],
    hash_table: &ChainedHashTable,
    position: usize,
    prev_length: usize,
    max_hash_checks: u16,
) -> (usize, usize) {
    // debug_assert_eq!(position, hash_table.current_head() as usize);

    // If we already have a match at the maximum length,
    // or we can't grow further, we stop here.
    if prev_length >= MAX_MATCH || position + prev_length >= data.len() {
        return (0, 0);
    }

    let limit = if position > WINDOW_SIZE {
        position - WINDOW_SIZE
    } else {
        0
    };

    // Make sure the length is at least one to simplify the matching code, as
    // otherwise the matching code might underflow.
    let prev_length = cmp::max(prev_length, 1);

    let max_length = cmp::min(data.len() - position, MAX_MATCH);

    // The position in the hash chain we are currently checking.
    let mut current_head = position;

    // The best match length we've found so far, and it's distance.
    let mut best_length = prev_length;
    let mut best_distance = 0;

    // The position of the previous value in the hash chain.
    let mut prev_head;

    for _ in 0..max_hash_checks {
        prev_head = current_head;
        current_head = hash_table.get_prev(current_head) as usize;
        if current_head >= prev_head || current_head < limit {
            // If the current hash chain value refers to itself, or is referring to
            // a value that's higher (we only move backwars through the chain),
            // we are at the end and can stop.
            break;
        }

        // We only check further if the match length can actually increase
        // Checking if the end byte and the potential next byte matches is generally
        // more likely to give a quick answer rather than checking from the start first, given
        // that the hashes match.
        // If there is no previous match, best_length will be 1 and the two first bytes will
        // be checked instead.
        // Since we've made sure best_length is always at least 1, this shouldn't underflow.
        if data[position + best_length - 1..=position + best_length]
            == data[current_head + best_length - 1..=current_head + best_length]
        {
            // Actually check how many bytes match.
            // At the moment this will check the two bytes we just checked again,
            // though adding code for skipping these bytes may not result in any speed
            // gain due to the added complexity.
            let length = get_match_length(data, position, current_head);
            if length > best_length {
                best_length = length;
                best_distance = position - current_head;
                if length == max_length {
                    // We are at the max length, so there is no point
                    // searching any longer
                    break;
                }
            }
        }
    }

    if best_length > prev_length {
        (best_length, best_distance)
    } else {
        (0, 0)
    }
}

/// Try finding the position and length of the longest match in the input data using fast zlib
/// hash skipping algorithm.
/// # Returns
/// (length, distance from position)
/// If no match is found that was better than `prev_length` or at all, or we are at the start,
/// the length value returned will be 2.
///
/// # Arguments:
/// `data`: The data to search in.
/// `hash_table`: Hash table to use for searching.
/// `position`: The position in the data to match against.
/// `prev_length`: The length of the previous `longest_match` check to compare against.
/// `max_hash_checks`: The maximum number of matching hash chain positions to check.
#[cfg(test)]
pub fn longest_match_fast(
    data: &[u8],
    hash_table: &ChainedHashTable,
    position: usize,
    prev_length: usize,
    max_hash_checks: u16,
) -> (usize, usize) {
    // debug_assert_eq!(position, hash_table.current_head() as usize);

    // If we already have a match at the maximum length,
    // or we can't grow further, we stop here.
    if prev_length >= MAX_MATCH || position + prev_length >= data.len() {
        return (0, 0);
    }

    let limit = if position > WINDOW_SIZE {
        position - WINDOW_SIZE
    } else {
        0
    };

    // Make sure the length is at least one to simplify the matching code, as
    // otherwise the matching code might underflow.
    let prev_length = cmp::max(prev_length, 1);

    let max_length = cmp::min(data.len() - position, MAX_MATCH);

    // The position in the hash chain we are currently checking.
    let mut current_head = position;

    // The best match length we've found so far, and it's distance.
    let mut best_length = prev_length;
    let mut best_distance = 0;
    // The offset from the start of the match of the hash chain we are traversing.
    let mut offset = 0;

    // The position of the previous value in the hash chain.
    let mut prev_head;

    for _ in 0..max_hash_checks {
        prev_head = current_head;
        current_head = hash_table.get_prev(current_head) as usize;
        if current_head >= prev_head || current_head < limit + offset {
            // If the current hash chain value refers to itself, or is referring to
            // a value that's higher (we only move backwars through the chain),
            // we are at the end and can stop.
            break;
        }

        let offset_head = current_head - offset;

        // We only check further if the match length can actually increase
        // Checking if the end byte and the potential next byte matches is generally
        // more likely to give a quick answer rather than checking from the start first, given
        // that the hashes match.
        // If there is no previous match, best_length will be 1 and the two first bytes will
        // be checked instead.
        // Since we've made sure best_length is always at least 1, this shouldn't underflow.
        if data[position + best_length - 1..position + best_length + 1]
            == data[offset_head + best_length - 1..offset_head + best_length + 1]
        {
            // Actually check how many bytes match.
            // At the moment this will check the two bytes we just checked again,
            // though adding code for skipping these bytes may not result in any speed
            // gain due to the added complexity.
            let length = get_match_length(data, position, offset_head);
            if length > best_length {
                best_length = length;
                best_distance = position - offset_head;
                if length == max_length {
                    // We are at the max length, so there is no point
                    // searching any longer
                    break;
                }

                // Find the position in the match where the next has position is the furthest away.
                // By moving to a different hash chain we can potentially skip a lot of checks,
                // saving time.
                // We avoid doing this for matches that extend past the starting position, as
                // those will contain positions that are not in the hash table yet.
                if best_distance > best_length {
                    offset = hash_table.farthest_next(offset_head, length);
                    current_head = offset_head + offset;
                }
            }
        }
    }

    if best_length > prev_length {
        (best_length, best_distance)
    } else {
        (0, 0)
    }
}

// Get the longest match from the current position of the hash table.
#[inline]
#[cfg(test)]
pub fn longest_match_current(data: &[u8], hash_table: &ChainedHashTable) -> (usize, usize) {
    use crate::compression_options::MAX_HASH_CHECKS;
    longest_match(
        data,
        hash_table,
        hash_table.current_head() as usize,
        MIN_MATCH as usize - 1,
        MAX_HASH_CHECKS,
    )
}

#[cfg(test)]
mod test {
    use super::{get_match_length, longest_match, longest_match_fast};
    use crate::chained_hash_table::{filled_hash_table, ChainedHashTable, HASH_BYTES};

    /// Test that match lengths are calculated correctly
    #[test]
    fn match_length() {
        let test_arr = [5u8, 5, 5, 5, 5, 9, 9, 2, 3, 5, 5, 5, 5, 5];
        let l = get_match_length(&test_arr, 9, 0);
        assert_eq!(l, 5);
        let l2 = get_match_length(&test_arr, 9, 7);
        assert_eq!(l2, 0);
        let l3 = get_match_length(&test_arr, 10, 0);
        assert_eq!(l3, 4);
    }

    /// Test that we get the longest of the matches
    #[test]
    fn get_longest_match() {
        let test_data = b"xTest data, Test_data,zTest data";
        let hash_table = filled_hash_table(&test_data[..23 + 1 + HASH_BYTES - 1]);

        let (length, distance) = super::longest_match_current(test_data, &hash_table);

        // We check that we get the longest match, rather than the shorter, but closer one.
        assert_eq!(distance, 22);
        assert_eq!(length, 9);
        let test_arr2 = [
            10u8, 10, 10, 10, 10, 10, 10, 10, 2, 3, 5, 10, 10, 10, 10, 10,
        ];
        let hash_table = filled_hash_table(&test_arr2[..HASH_BYTES + 1 + 1 + 2]);
        let (length, distance) = super::longest_match_current(&test_arr2, &hash_table);

        assert_eq!(distance, 1);
        assert_eq!(length, 4);
    }

    /// Make sure we can get a match at index zero
    #[test]
    fn match_index_zero() {
        let test_data = b"AAAAAAA";

        let mut hash_table = ChainedHashTable::from_starting_values(test_data[0], test_data[1]);
        for (n, &b) in test_data[2..5].iter().enumerate() {
            hash_table.add_hash_value(n, b);
        }

        let (match_length, match_dist) = longest_match(test_data, &hash_table, 1, 0, 4096);

        assert_eq!(match_dist, 1);
        assert!(match_length == 6);
    }

    /// Test for fast_zlib algorithm.
    /// Check that it doesn't give worse matches than the default one.
    /// ignored by default as it's slow, and best ran in release mode.
    #[ignore]
    #[test]
    fn fast_match_at_least_equal() {
        use crate::test_utils::get_test_data;
        for start_pos in 10000..50000 {
            const NUM_CHECKS: u16 = 400;
            let data = get_test_data();
            let hash_table = filled_hash_table(&data[..start_pos + 1]);
            let pos = hash_table.current_head() as usize;

            let naive_match = longest_match(&data[..], &hash_table, pos, 0, NUM_CHECKS);
            let fast_match = longest_match_fast(&data[..], &hash_table, pos, 0, NUM_CHECKS);

            if fast_match.0 > naive_match.0 {
                println!("Fast match found better match!");
            }

            assert!(
                fast_match.0 >= naive_match.0,
                "naive match had better length! start_pos: {}, naive: {:?}, fast {:?}",
                start_pos,
                naive_match,
                fast_match
            );
            assert!(
                fast_match.1 >= naive_match.1,
                "naive match had better dist! start_pos: {} naive {:?}, fast {:?}",
                start_pos,
                naive_match,
                fast_match
            );
        }
    }
}

#[cfg(all(test, feature = "benchmarks"))]
mod bench {
    use super::{longest_match, longest_match_fast};
    use chained_hash_table::filled_hash_table;
    use test_std::Bencher;
    use test_utils::get_test_data;
    #[bench]
    fn matching(b: &mut Bencher) {
        const POS: usize = 29000;
        let data = get_test_data();
        let hash_table = filled_hash_table(&data[..POS + 1]);
        let pos = hash_table.current_head() as usize;
        println!(
            "M: {:?}",
            longest_match(&data[..], &hash_table, pos, 0, 4096)
        );
        b.iter(|| longest_match(&data[..], &hash_table, pos, 0, 4096));
    }

    #[bench]
    fn fast_matching(b: &mut Bencher) {
        const POS: usize = 29000;
        let data = get_test_data();
        let hash_table = filled_hash_table(&data[..POS + 1]);
        let pos = hash_table.current_head() as usize;
        println!(
            "M: {:?}",
            longest_match_fast(&data[..], &hash_table, pos, 0, 4096)
        );
        b.iter(|| longest_match_fast(&data[..], &hash_table, pos, 0, 4096));
    }
}