1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
use std::cmp; use crate::chained_hash_table::{ChainedHashTable, WINDOW_SIZE}; const MAX_MATCH: usize = crate::huffman_table::MAX_MATCH as usize; #[cfg(test)] const MIN_MATCH: usize = crate::huffman_table::MIN_MATCH as usize; /// Get the length of the checked match /// The function returns number of bytes at and including `current_pos` that are the same as the /// ones at `pos_to_check` #[inline] pub fn get_match_length(data: &[u8], current_pos: usize, pos_to_check: usize) -> usize { // Unsafe version using unaligned loads for comparison. // Faster when benching the matching function alone, // but not as significant when running the full thing. /* type Comp = u64; use std::mem::size_of; let max = cmp::min(data.len() - current_pos, MAX_MATCH); let mut left = max; let s = size_of::<Comp>(); unsafe { let mut cur = data.as_ptr().offset(current_pos as isize); let mut tc = data.as_ptr().offset(pos_to_check as isize); while left >= s && (*(cur as *const Comp) == *(tc as *const Comp)) { left -= s; cur = cur.offset(s as isize); tc = tc.offset(s as isize); } while left > 0 && *cur == *tc { left -= 1; cur = cur.offset(1); tc = tc.offset(1); } } max - left */ // Slightly faster than naive in single bench. // Does not use unaligned loads. // let l = cmp::min(MAX_MATCH, data.len() - current_pos); // let a = unsafe{&data.get_unchecked(current_pos..current_pos + l)}; // let b = unsafe{&data.get_unchecked(pos_to_check..)}; // let mut len = 0; // for (l, r) in a // .iter() // .zip(b.iter()) { // if *l == *r { // len += 1; // continue; // } else { // break; // } // } // len as usize // Naive version data[current_pos..] .iter() .zip(data[pos_to_check..].iter()) .take(MAX_MATCH) .take_while(|&(&a, &b)| a == b) .count() } /// Try finding the position and length of the longest match in the input data. /// # Returns /// (length, distance from position) /// If no match is found that was better than `prev_length` or at all, or we are at the start, /// the length value returned will be 2. /// /// # Arguments: /// `data`: The data to search in. /// `hash_table`: Hash table to use for searching. /// `position`: The position in the data to match against. /// `prev_length`: The length of the previous `longest_match` check to compare against. /// `max_hash_checks`: The maximum number of matching hash chain positions to check. pub fn longest_match( data: &[u8], hash_table: &ChainedHashTable, position: usize, prev_length: usize, max_hash_checks: u16, ) -> (usize, usize) { // debug_assert_eq!(position, hash_table.current_head() as usize); // If we already have a match at the maximum length, // or we can't grow further, we stop here. if prev_length >= MAX_MATCH || position + prev_length >= data.len() { return (0, 0); } let limit = if position > WINDOW_SIZE { position - WINDOW_SIZE } else { 0 }; // Make sure the length is at least one to simplify the matching code, as // otherwise the matching code might underflow. let prev_length = cmp::max(prev_length, 1); let max_length = cmp::min(data.len() - position, MAX_MATCH); // The position in the hash chain we are currently checking. let mut current_head = position; // The best match length we've found so far, and it's distance. let mut best_length = prev_length; let mut best_distance = 0; // The position of the previous value in the hash chain. let mut prev_head; for _ in 0..max_hash_checks { prev_head = current_head; current_head = hash_table.get_prev(current_head) as usize; if current_head >= prev_head || current_head < limit { // If the current hash chain value refers to itself, or is referring to // a value that's higher (we only move backwars through the chain), // we are at the end and can stop. break; } // We only check further if the match length can actually increase // Checking if the end byte and the potential next byte matches is generally // more likely to give a quick answer rather than checking from the start first, given // that the hashes match. // If there is no previous match, best_length will be 1 and the two first bytes will // be checked instead. // Since we've made sure best_length is always at least 1, this shouldn't underflow. if data[position + best_length - 1..=position + best_length] == data[current_head + best_length - 1..=current_head + best_length] { // Actually check how many bytes match. // At the moment this will check the two bytes we just checked again, // though adding code for skipping these bytes may not result in any speed // gain due to the added complexity. let length = get_match_length(data, position, current_head); if length > best_length { best_length = length; best_distance = position - current_head; if length == max_length { // We are at the max length, so there is no point // searching any longer break; } } } } if best_length > prev_length { (best_length, best_distance) } else { (0, 0) } } /// Try finding the position and length of the longest match in the input data using fast zlib /// hash skipping algorithm. /// # Returns /// (length, distance from position) /// If no match is found that was better than `prev_length` or at all, or we are at the start, /// the length value returned will be 2. /// /// # Arguments: /// `data`: The data to search in. /// `hash_table`: Hash table to use for searching. /// `position`: The position in the data to match against. /// `prev_length`: The length of the previous `longest_match` check to compare against. /// `max_hash_checks`: The maximum number of matching hash chain positions to check. #[cfg(test)] pub fn longest_match_fast( data: &[u8], hash_table: &ChainedHashTable, position: usize, prev_length: usize, max_hash_checks: u16, ) -> (usize, usize) { // debug_assert_eq!(position, hash_table.current_head() as usize); // If we already have a match at the maximum length, // or we can't grow further, we stop here. if prev_length >= MAX_MATCH || position + prev_length >= data.len() { return (0, 0); } let limit = if position > WINDOW_SIZE { position - WINDOW_SIZE } else { 0 }; // Make sure the length is at least one to simplify the matching code, as // otherwise the matching code might underflow. let prev_length = cmp::max(prev_length, 1); let max_length = cmp::min(data.len() - position, MAX_MATCH); // The position in the hash chain we are currently checking. let mut current_head = position; // The best match length we've found so far, and it's distance. let mut best_length = prev_length; let mut best_distance = 0; // The offset from the start of the match of the hash chain we are traversing. let mut offset = 0; // The position of the previous value in the hash chain. let mut prev_head; for _ in 0..max_hash_checks { prev_head = current_head; current_head = hash_table.get_prev(current_head) as usize; if current_head >= prev_head || current_head < limit + offset { // If the current hash chain value refers to itself, or is referring to // a value that's higher (we only move backwars through the chain), // we are at the end and can stop. break; } let offset_head = current_head - offset; // We only check further if the match length can actually increase // Checking if the end byte and the potential next byte matches is generally // more likely to give a quick answer rather than checking from the start first, given // that the hashes match. // If there is no previous match, best_length will be 1 and the two first bytes will // be checked instead. // Since we've made sure best_length is always at least 1, this shouldn't underflow. if data[position + best_length - 1..position + best_length + 1] == data[offset_head + best_length - 1..offset_head + best_length + 1] { // Actually check how many bytes match. // At the moment this will check the two bytes we just checked again, // though adding code for skipping these bytes may not result in any speed // gain due to the added complexity. let length = get_match_length(data, position, offset_head); if length > best_length { best_length = length; best_distance = position - offset_head; if length == max_length { // We are at the max length, so there is no point // searching any longer break; } // Find the position in the match where the next has position is the furthest away. // By moving to a different hash chain we can potentially skip a lot of checks, // saving time. // We avoid doing this for matches that extend past the starting position, as // those will contain positions that are not in the hash table yet. if best_distance > best_length { offset = hash_table.farthest_next(offset_head, length); current_head = offset_head + offset; } } } } if best_length > prev_length { (best_length, best_distance) } else { (0, 0) } } // Get the longest match from the current position of the hash table. #[inline] #[cfg(test)] pub fn longest_match_current(data: &[u8], hash_table: &ChainedHashTable) -> (usize, usize) { use crate::compression_options::MAX_HASH_CHECKS; longest_match( data, hash_table, hash_table.current_head() as usize, MIN_MATCH as usize - 1, MAX_HASH_CHECKS, ) } #[cfg(test)] mod test { use super::{get_match_length, longest_match, longest_match_fast}; use crate::chained_hash_table::{filled_hash_table, ChainedHashTable, HASH_BYTES}; /// Test that match lengths are calculated correctly #[test] fn match_length() { let test_arr = [5u8, 5, 5, 5, 5, 9, 9, 2, 3, 5, 5, 5, 5, 5]; let l = get_match_length(&test_arr, 9, 0); assert_eq!(l, 5); let l2 = get_match_length(&test_arr, 9, 7); assert_eq!(l2, 0); let l3 = get_match_length(&test_arr, 10, 0); assert_eq!(l3, 4); } /// Test that we get the longest of the matches #[test] fn get_longest_match() { let test_data = b"xTest data, Test_data,zTest data"; let hash_table = filled_hash_table(&test_data[..23 + 1 + HASH_BYTES - 1]); let (length, distance) = super::longest_match_current(test_data, &hash_table); // We check that we get the longest match, rather than the shorter, but closer one. assert_eq!(distance, 22); assert_eq!(length, 9); let test_arr2 = [ 10u8, 10, 10, 10, 10, 10, 10, 10, 2, 3, 5, 10, 10, 10, 10, 10, ]; let hash_table = filled_hash_table(&test_arr2[..HASH_BYTES + 1 + 1 + 2]); let (length, distance) = super::longest_match_current(&test_arr2, &hash_table); assert_eq!(distance, 1); assert_eq!(length, 4); } /// Make sure we can get a match at index zero #[test] fn match_index_zero() { let test_data = b"AAAAAAA"; let mut hash_table = ChainedHashTable::from_starting_values(test_data[0], test_data[1]); for (n, &b) in test_data[2..5].iter().enumerate() { hash_table.add_hash_value(n, b); } let (match_length, match_dist) = longest_match(test_data, &hash_table, 1, 0, 4096); assert_eq!(match_dist, 1); assert!(match_length == 6); } /// Test for fast_zlib algorithm. /// Check that it doesn't give worse matches than the default one. /// ignored by default as it's slow, and best ran in release mode. #[ignore] #[test] fn fast_match_at_least_equal() { use crate::test_utils::get_test_data; for start_pos in 10000..50000 { const NUM_CHECKS: u16 = 400; let data = get_test_data(); let hash_table = filled_hash_table(&data[..start_pos + 1]); let pos = hash_table.current_head() as usize; let naive_match = longest_match(&data[..], &hash_table, pos, 0, NUM_CHECKS); let fast_match = longest_match_fast(&data[..], &hash_table, pos, 0, NUM_CHECKS); if fast_match.0 > naive_match.0 { println!("Fast match found better match!"); } assert!( fast_match.0 >= naive_match.0, "naive match had better length! start_pos: {}, naive: {:?}, fast {:?}", start_pos, naive_match, fast_match ); assert!( fast_match.1 >= naive_match.1, "naive match had better dist! start_pos: {} naive {:?}, fast {:?}", start_pos, naive_match, fast_match ); } } } #[cfg(all(test, feature = "benchmarks"))] mod bench { use super::{longest_match, longest_match_fast}; use chained_hash_table::filled_hash_table; use test_std::Bencher; use test_utils::get_test_data; #[bench] fn matching(b: &mut Bencher) { const POS: usize = 29000; let data = get_test_data(); let hash_table = filled_hash_table(&data[..POS + 1]); let pos = hash_table.current_head() as usize; println!( "M: {:?}", longest_match(&data[..], &hash_table, pos, 0, 4096) ); b.iter(|| longest_match(&data[..], &hash_table, pos, 0, 4096)); } #[bench] fn fast_matching(b: &mut Bencher) { const POS: usize = 29000; let data = get_test_data(); let hash_table = filled_hash_table(&data[..POS + 1]); let pos = hash_table.current_head() as usize; println!( "M: {:?}", longest_match_fast(&data[..], &hash_table, pos, 0, 4096) ); b.iter(|| longest_match_fast(&data[..], &hash_table, pos, 0, 4096)); } }