1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
// origin: FreeBSD /usr/src/lib/msun/src/s_tan.c */ // // ==================================================== // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunPro, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== use super::{k_tan, rem_pio2}; // tan(x) // Return tangent function of x. // // kernel function: // k_tan ... tangent function on [-pi/4,pi/4] // rem_pio2 ... argument reduction routine // // Method. // Let S,C and T denote the sin, cos and tan respectively on // [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 // in [-pi/4 , +pi/4], and let n = k mod 4. // We have // // n sin(x) cos(x) tan(x) // ---------------------------------------------------------- // 0 S C T // 1 C -S -1/T // 2 -S -C T // 3 -C S -1/T // ---------------------------------------------------------- // // Special cases: // Let trig be any of sin, cos, or tan. // trig(+-INF) is NaN, with signals; // trig(NaN) is that NaN; // // Accuracy: // TRIG(x) returns trig(x) nearly rounded #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] pub fn tan(x: f64) -> f64 { let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120 let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff; /* |x| ~< pi/4 */ if ix <= 0x3fe921fb { if ix < 0x3e400000 { /* |x| < 2**-27 */ /* raise inexact if x!=0 and underflow if subnormal */ force_eval!(if ix < 0x00100000 { x / x1p120 as f64 } else { x + x1p120 as f64 }); return x; } return k_tan(x, 0.0, 0); } /* tan(Inf or NaN) is NaN */ if ix >= 0x7ff00000 { return x - x; } /* argument reduction */ let (n, y0, y1) = rem_pio2(x); k_tan(y0, y1, n & 1) }