Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
use core::sync::atomic::compiler_fence;
use core::sync::atomic::Ordering;

/// Trait which allows reading from primitive atomic types with "consume" ordering.
pub trait AtomicConsume {
    /// Type returned by `load_consume`.
    type Val;

    /// Loads a value from the atomic using a "consume" memory ordering.
    ///
    /// This is similar to the "acquire" ordering, except that an ordering is
    /// only guaranteed with operations that "depend on" the result of the load.
    /// However consume loads are usually much faster than acquire loads on
    /// architectures with a weak memory model since they don't require memory
    /// fence instructions.
    ///
    /// The exact definition of "depend on" is a bit vague, but it works as you
    /// would expect in practice since a lot of software, especially the Linux
    /// kernel, rely on this behavior.
    ///
    /// This is currently only implemented on ARM and AArch64, where a fence
    /// can be avoided. On other architectures this will fall back to a simple
    /// `load(Ordering::Acquire)`.
    fn load_consume(&self) -> Self::Val;
}

#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
macro_rules! impl_consume {
    () => {
        #[inline]
        fn load_consume(&self) -> Self::Val {
            let result = self.load(Ordering::Relaxed);
            compiler_fence(Ordering::Acquire);
            result
        }
    };
}

#[cfg(not(any(target_arch = "arm", target_arch = "aarch64")))]
macro_rules! impl_consume {
    () => {
        #[inline]
        fn load_consume(&self) -> Self::Val {
            self.load(Ordering::Acquire)
        }
    };
}

macro_rules! impl_atomic {
    ($atomic:ident, $val:ty) => {
        impl AtomicConsume for ::core::sync::atomic::$atomic {
            type Val = $val;
            impl_consume!();
        }
    };
}

impl_atomic!(AtomicBool, bool);
impl_atomic!(AtomicUsize, usize);
impl_atomic!(AtomicIsize, isize);
#[cfg(has_atomic_u8)]
impl_atomic!(AtomicU8, u8);
#[cfg(has_atomic_u8)]
impl_atomic!(AtomicI8, i8);
#[cfg(has_atomic_u16)]
impl_atomic!(AtomicU16, u16);
#[cfg(has_atomic_u16)]
impl_atomic!(AtomicI16, i16);
#[cfg(has_atomic_u32)]
impl_atomic!(AtomicU32, u32);
#[cfg(has_atomic_u32)]
impl_atomic!(AtomicI32, i32);
#[cfg(has_atomic_u64)]
impl_atomic!(AtomicU64, u64);
#[cfg(has_atomic_u64)]
impl_atomic!(AtomicI64, i64);

impl<T> AtomicConsume for ::core::sync::atomic::AtomicPtr<T> {
    type Val = *mut T;
    impl_consume!();
}