Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
//! Functions for balancing a matrix.

use simba::scalar::RealField;
use std::ops::{DivAssign, MulAssign};

use crate::allocator::Allocator;
use crate::base::dimension::{Dim, U1};
use crate::base::storage::Storage;
use crate::base::{DefaultAllocator, MatrixN, VectorN};

/// Applies in-place a modified Parlett and Reinsch matrix balancing with 2-norm to the matrix `m` and returns
/// the corresponding diagonal transformation.
///
/// See https://arxiv.org/pdf/1401.5766.pdf
pub fn balance_parlett_reinsch<N: RealField, D: Dim>(m: &mut MatrixN<N, D>) -> VectorN<N, D>
where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
{
    assert!(m.is_square(), "Unable to balance a non-square matrix.");

    let dim = m.data.shape().0;
    let radix: N = crate::convert(2.0f64);
    let mut d = VectorN::from_element_generic(dim, U1, N::one());

    let mut converged = false;

    while !converged {
        converged = true;

        for i in 0..dim.value() {
            let mut c = m.column(i).norm_squared();
            let mut r = m.row(i).norm_squared();
            let mut f = N::one();

            let s = c + r;
            c = c.sqrt();
            r = r.sqrt();

            if c.is_zero() || r.is_zero() {
                continue;
            }

            while c < r / radix {
                c *= radix;
                r /= radix;
                f *= radix;
            }

            while c >= r * radix {
                c /= radix;
                r *= radix;
                f /= radix;
            }

            let eps: N = crate::convert(0.95);
            if c * c + r * r < eps * s {
                converged = false;
                d[i] *= f;
                m.column_mut(i).mul_assign(f);
                m.row_mut(i).div_assign(f);
            }
        }
    }

    d
}

/// Computes in-place `D * m * D.inverse()`, where `D` is the matrix with diagonal `d`.
pub fn unbalance<N: RealField, D: Dim>(m: &mut MatrixN<N, D>, d: &VectorN<N, D>)
where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
{
    assert!(m.is_square(), "Unable to unbalance a non-square matrix.");
    assert_eq!(m.nrows(), d.len(), "Unbalancing: mismatched dimensions.");

    for j in 0..d.len() {
        let mut col = m.column_mut(j);
        let denom = N::one() / d[j];

        for i in 0..d.len() {
            col[i] *= d[i] * denom;
        }
    }
}