1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
use crate::math::Isometry;
use crate::query::ClosestPoints;
use crate::shape::{Segment, SegmentPointLocation};
use na::allocator::Allocator;
use na::base::{DefaultAllocator, DimName};
use na::{self, Point, RealField};

/// Closest points between segments.
#[inline]
pub fn closest_points_segment_segment<N: RealField>(
    m1: &Isometry<N>,
    seg1: &Segment<N>,
    m2: &Isometry<N>,
    seg2: &Segment<N>,
    margin: N,
) -> ClosestPoints<N> {
    let (loc1, loc2) = closest_points_segment_segment_with_locations(m1, seg1, m2, seg2);
    let p1 = seg1.point_at(&loc1);
    let p2 = seg2.point_at(&loc2);

    if na::distance_squared(&p1, &p2) <= margin * margin {
        ClosestPoints::WithinMargin(p1, p2)
    } else {
        ClosestPoints::Disjoint
    }
}

// FIXME: use this specialized procedure for distance/interference/contact determination as well.
/// Closest points between two segments.
#[inline]
pub fn closest_points_segment_segment_with_locations<N: RealField>(
    m1: &Isometry<N>,
    seg1: &Segment<N>,
    m2: &Isometry<N>,
    seg2: &Segment<N>,
) -> (SegmentPointLocation<N>, SegmentPointLocation<N>) {
    let seg1 = seg1.transformed(m1);
    let seg2 = seg2.transformed(m2);

    closest_points_segment_segment_with_locations_nD((&seg1.a, &seg1.b), (&seg2.a, &seg2.b))
}

/// Segment-segment closest points computation in an arbitrary dimension.
#[allow(non_snake_case)]
#[inline]
pub fn closest_points_segment_segment_with_locations_nD<N, D>(
    seg1: (&Point<N, D>, &Point<N, D>),
    seg2: (&Point<N, D>, &Point<N, D>),
) -> (SegmentPointLocation<N>, SegmentPointLocation<N>)
where
    N: RealField,
    D: DimName,
    DefaultAllocator: Allocator<N, D>,
{
    let res =
        closest_points_segment_segment_with_locations_nD_eps(seg1, seg2, N::default_epsilon());
    (res.0, res.1)
}

/// Segment-segment closest points computation in an arbitrary dimension.
///
/// This returns the location of the closest points, as well as a boolean indicating
/// if the two segments were considered parallel.
#[allow(non_snake_case)]
#[inline]
pub fn closest_points_segment_segment_with_locations_nD_eps<N, D>(
    seg1: (&Point<N, D>, &Point<N, D>),
    seg2: (&Point<N, D>, &Point<N, D>),
    eps: N,
) -> (SegmentPointLocation<N>, SegmentPointLocation<N>, bool)
where
    N: RealField,
    D: DimName,
    DefaultAllocator: Allocator<N, D>,
{
    // Inspired by RealField-time collision detection by Christer Ericson.
    let d1 = seg1.1 - seg1.0;
    let d2 = seg2.1 - seg2.0;
    let r = seg1.0 - seg2.0;

    let a = d1.norm_squared();
    let e = d2.norm_squared();
    let f = d2.dot(&r);

    let _0: N = na::zero();
    let _1: N = na::one();

    let mut s;
    let mut t;
    let mut parallel = false;

    if a <= eps && e <= eps {
        s = _0;
        t = _0;
    } else if a <= eps {
        s = _0;
        t = na::clamp(f / e, _0, _1);
    } else {
        let c = d1.dot(&r);
        if e <= eps {
            t = _0;
            s = na::clamp(-c / a, _0, _1);
        } else {
            let b = d1.dot(&d2);
            let ae = a * e;
            let bb = b * b;
            let denom = ae - bb;

            parallel = denom <= eps || ulps_eq!(ae, bb);

            // Use absolute and ulps error to test collinearity.
            if !parallel {
                s = na::clamp((b * f - c * e) / denom, _0, _1);
            } else {
                s = _0;
            }

            t = (b * s + f) / e;

            if t < _0 {
                t = _0;
                s = na::clamp(-c / a, _0, _1);
            } else if t > _1 {
                t = _1;
                s = na::clamp((b - c) / a, _0, _1);
            }
        }
    }

    let loc1 = if s == _0 {
        SegmentPointLocation::OnVertex(0)
    } else if s == _1 {
        SegmentPointLocation::OnVertex(1)
    } else {
        SegmentPointLocation::OnEdge([_1 - s, s])
    };

    let loc2 = if t == _0 {
        SegmentPointLocation::OnVertex(0)
    } else if t == _1 {
        SegmentPointLocation::OnVertex(1)
    } else {
        SegmentPointLocation::OnEdge([_1 - t, t])
    };

    (loc1, loc2, parallel)
}