1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
//! Find minimum-spanning-tree in an undirected graph using
//! [Kruskal's algorithm](https://en.wikipedia.org/wiki/Kruskal's_algorithm).

use indexmap::IndexSet;
use std::hash::Hash;
use std::mem;

// Find parent and compress path by path halving.
fn find(parents: &mut [usize], mut node: usize) -> usize {
    while parents[node] != node {
        parents[node] = parents[parents[node]];
        node = parents[node];
    }
    node
}

#[test]
fn test_path_halving() {
    let mut parents = vec![0, 0, 1, 2, 3, 4, 5, 6];
    assert_eq!(find(&mut parents, 7), 0);
    assert_eq!(parents, vec![0, 0, 1, 1, 3, 3, 5, 5]);
    assert_eq!(find(&mut parents, 7), 0);
    assert_eq!(parents, vec![0, 0, 1, 0, 3, 3, 5, 3]);
    assert_eq!(find(&mut parents, 7), 0);
    assert_eq!(parents, vec![0, 0, 1, 0, 3, 3, 5, 0]);
    assert_eq!(find(&mut parents, 6), 0);
    assert_eq!(parents, vec![0, 0, 1, 0, 3, 3, 3, 0]);
    assert_eq!(find(&mut parents, 6), 0);
    assert_eq!(parents, vec![0, 0, 1, 0, 3, 3, 0, 0]);
}

fn union(parents: &mut [usize], ranks: &mut [usize], mut a: usize, mut b: usize) {
    if ranks[a] < ranks[b] {
        mem::swap(&mut a, &mut b);
    }
    parents[b] = a;
    if ranks[a] == ranks[b] {
        ranks[a] += 1;
    }
}

/// Minimal-spanning-tree for nodes with integer indices. The nodes must have
/// consecutives indices between 0 and `number_of_nodes`-1.
///
/// # Panics
///
/// This function panics if a node is outside the range [0, `number_of_nodes`-1].
pub fn kruskal_indices<C>(
    number_of_nodes: usize,
    edges: &[(usize, usize, C)],
) -> impl Iterator<Item = (usize, usize, C)>
where
    C: Clone + Ord,
{
    let mut parents = (0..number_of_nodes).collect::<Vec<_>>();
    let mut ranks = Vec::with_capacity(number_of_nodes);
    ranks.resize(number_of_nodes, 1);
    let mut edges = edges.to_vec();
    edges.sort_by(|a, b| a.2.cmp(&b.2));
    edges.into_iter().filter_map(move |(a, b, w)| {
        let ra = find(&mut parents, a);
        let rb = find(&mut parents, b);
        if ra != rb {
            union(&mut parents, &mut ranks, ra, rb);
            Some((a, b, w))
        } else {
            None
        }
    })
}

/// Find a minimum-spanning-tree. From a collection of
/// weighted edges, return a vector of edges forming
/// a minimum-spanning-tree.
pub fn kruskal<N, C>(edges: &[(N, N, C)]) -> impl Iterator<Item = (N, N, C)>
where
    N: Clone + Hash + Eq,
    C: Clone + Ord,
{
    let mut nodes = IndexSet::new();
    let edges = edges
        .iter()
        .map(|&(ref a, ref b, ref w)| {
            let ia = nodes.insert_full(a.clone()).0;
            let ib = nodes.insert_full(b.clone()).0;
            (ia, ib, w.clone())
        })
        .collect::<Vec<_>>();
    kruskal_indices(nodes.len(), &edges).map(move |(ia, ib, w)| {
        (
            nodes.get_index(ia).unwrap().clone(),
            nodes.get_index(ib).unwrap().clone(),
            w,
        )
    })
}