Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
use na::{Mat4, one, Vec3};
use crate::mesh;
use blender;

use std::iter;

#[derive(Copy, Clone, Debug)]
#[allow(dead_code)]
pub enum MirrorFlags{
	Clipping = 1 << 0,
	MirrorU  = 1 << 1,
	MirrorV  = 1 << 2,
	AxisX    = 1 << 3,
	AxisY    = 1 << 4,
	AxisZ    = 1 << 5,
	VGroup   = 1 << 6,
	NoMerge  = 1 << 7,
}

#[derive(Copy, Clone, Debug)]
pub enum MirrorAxis{
    X = 0,
    Y = 1,
    Z = 2,
}

fn find_flip_group(vertex_groups: &[String], group_idx: i32) -> Option<i32>{
    let vertex_group = vertex_groups.get(group_idx as usize)?.clone();
    let separators = ['.', ' ', '-', '_'];
    let mirrored_group = if separators.contains(&vertex_group[vertex_group.len() - 2..].chars().next().unwrap()){
        let suffix = &vertex_group[vertex_group.len() - 1..];
        let mirror_suffix = match suffix{
            "l" => "r",
            "r" => "l",
            "L" => "R",
            "R" => "L",
            _ => return None,
        };
        vertex_group[0..vertex_group.len()-1].to_string() + mirror_suffix
    }else if separators.contains(&vertex_group[1..].chars().next().unwrap()){
        let suffix = &vertex_group[0..1];
        let mirror_suffix = match suffix{
            "l" => "r",
            "r" => "l",
            "L" => "R",
            "R" => "L",
            _ => return None,
        };
        mirror_suffix.to_string() + &vertex_group[1..]
    }else if vertex_group.len()>=4 && vertex_group[0..4].to_lowercase() == "left"{
        let rest = &vertex_group[4..];
        if vertex_group.starts_with("l"){
            "right".to_string() + rest
        }else if &vertex_group[1..2] == "E"{
            "RIGHT".to_string() + rest
        }else{
            "Right".to_string() + rest
        }
    }else if vertex_group.len()>=5 && vertex_group[0..5].to_lowercase() == "right"{
        let rest = &vertex_group[5..];
        if vertex_group.starts_with("r"){
            "left".to_string() + rest
        }else if &vertex_group[1..2] == "I"{
            "LEFT".to_string() + rest
        }else{
            "Left".to_string() + rest
        }
    }else{
        return None;
    };
    vertex_groups.iter().position(|name| mirrored_group == *name).map(|pos| pos as i32)
}

pub fn mirror_mesh(mirror: &blender::Object, object: &blender::Object, mesh: &mut mesh::Mesh, vertex_groups: &[String], axis: MirrorAxis){
    let flag: u16 = *mirror.get("flag").unwrap();
    let tolerance: f32 = *mirror.get("tolerance").unwrap();
    let tolerance_sq = tolerance * tolerance;

    // Calculate the matrix to invert the vertices
    let mut mirror_mat: Mat4<f32> = one();
    mirror_mat[(axis as usize, axis as usize)] = -1.0;
    if let Ok(mirror_ob) = mirror.get_object("mirror_ob"){
        let mirror_obj_mat: &Mat4<f32> = mirror_ob.get("obmat").unwrap();
        let object_mat: &Mat4<f32> = object.get("obmat").unwrap();
        let tmp = mirror_obj_mat.try_inverse().unwrap() * *object_mat;
        let itmp = tmp.try_inverse().unwrap();
        mirror_mat = itmp * mirror_mat * tmp;
    }

    let num_verts = mesh.mvert.len();
    let num_edges = mesh.medge.len();
    let num_loops = mesh.mloop.len();

    // Mirror the vertices
    let mirror_verts: Vec<mesh::MVert> = mesh.mvert.iter_mut().map(|v| {
        let mirror_v = (mirror_mat * vec4!(v.position, 1.0)).xyz();
        let l = (mirror_v - v.position).norm();
        if flag & MirrorFlags::NoMerge as u16 == 0 && l*l < tolerance_sq{
            let merge_v = (v.position + mirror_v) * 0.5;
            v.position = merge_v;
            *v
        }else{
            let mut v = *v;
            v.position = mirror_v;
            v
        }
    }).collect();
    mesh.mvert.extend_from_slice(&mirror_verts);

    // Mirror the edges
    let edges_clone = mesh.medge.clone();
    let mirror_edges = edges_clone.iter().map(|edge|{
        let mut mirror_edge = *edge;
        mirror_edge.v1 += num_verts as u32;
        mirror_edge.v2 += num_verts as u32;
        mirror_edge
    });
    mesh.medge.extend(mirror_edges);

    // Mirror the uv loops
    let uvs_clone = mesh.mloopuv.clone();
    mesh.mloopuv.extend_from_slice(&uvs_clone);

    // Mirror the loops, change the cw by using the
    // first vertex and then iterating the loop in reverse
    {
        let loops_clone = mesh.mloop.clone();
        let mirror_loops = mesh.mpoly.iter().flat_map(|poly| {
            let start = poly.loopstart;
            let end = poly.loopstart + poly.totloop;
            iter::once(start).chain((start+1..end).rev()).map(|i|{
                let mut mirror_loop = loops_clone[i as usize];
                mirror_loop.v += num_verts as u32;
                mirror_loop.e += num_edges as u32;
                mirror_loop
            })
        });
        mesh.mloop.extend(mirror_loops);
    }

    // Mirror the polygons
    let polys_clone = mesh.mpoly.clone();
    let mirror_polys = polys_clone.iter().map(|poly|{
        let mut mirror_poly = *poly;
        mirror_poly.loopstart += num_loops as u32;
        mirror_poly
    });
    mesh.mpoly.extend(mirror_polys);

    // Mirror the weights
    if flag & MirrorFlags::VGroup as u16 == 0{
        let dvert = mesh.dvert.clone();
		mesh.dvert.extend_from_slice(&dvert);
    }else{
		let current_dvert_len = mesh.dvert.len();
        for i in 0..current_dvert_len{
            //let mut weights = weights.clone();
            let dw = mesh.dvert(i).iter().map(|weight|{
                let mut weight = *weight;
                match find_flip_group(vertex_groups, weight.def_nr){
                    Some(mirror_group) => {
                        weight.def_nr = mirror_group;
                    }
                    None => {},
                }
                weight
            }).collect::<Vec<_>>();
			let dw_start = mesh.dweights.len();
			mesh.dweights.extend_from_slice(&dw);
			let dw_end = mesh.dweights.len();
			let flag = mesh.dvert[i].flag;
			mesh.dvert.push(mesh::MDeformVert{
				dw_start,
				dw_end,
				flag: flag,
			});
    	}
    }
    //mesh.dvert.extend_from_slice(&mirror_weights);

    mesh.recalculate_normals();
}

pub fn array_mesh(modifier: &blender::Object, mesh: &mut mesh::Mesh){
    let offset: Vec3 = *modifier.get("offset").unwrap();
    let count: u32 = *modifier.get("count").unwrap();
    // let scale: Vec3 = *modifier.get("scale").unwrap();
    // let length: f32 = *modifier.get("length").unwrap();
    // let merge_dist: f32 = *modifier.get("merge_dist").unwrap();
    // let fit_type: i32 = *modifier.get("fit_type").unwrap();
    // let offset_type: i32 = *modifier.get("offset_type").unwrap();
    // let flags: i32 = *modifier.get("flags").unwrap();
    // let dimensions = mesh.dimensions();

    // println!("Array modifer: offset: {}, scale: {}, length: {}, count: {}, offset_type: {}, fit_type: {}, flags: {}",
    //     offset,
    //     scale,
    //     length,
    //     count,
    //     offset_type,
    //     fit_type,
    //     flags);

    let num_verts = mesh.mvert.len() as u32;
    let num_edges = mesh.medge.len() as u32;
    let num_loops = mesh.mloop.len() as u32;

	// let min = mesh.mvert.iter().fold(mesh.mvert[0].position.x, |v1, v2| v1.min(v2.position.x));
	// let max = mesh.mvert.iter().fold(mesh.mvert[0].position.x, |v1, v2| v1.max(v2.position.x));

    let mvert = (0..count).flat_map(|i|{
        mesh.mvert.iter().map(move |v|{
            let mut v2 = v.clone();
            v2.position += offset * i as f32;
            // v2.position += scale.component_mul(&dimensions) * i as f32;
            v2
        })
    }).collect();

    // Duplicate edges
    let edges_clone = mesh.medge.clone();
    let edges =  (0..count).flat_map(|i|{
        edges_clone.iter().map(move |edge|{
            let mut mirror_edge = *edge;
            mirror_edge.v1 += num_verts * i;
            mirror_edge.v2 += num_verts * i;
            mirror_edge
        })
    }).collect();


    // Duplicate the uv loops
    let uvs = (0..count).flat_map(|_|{
        mesh.mloopuv.clone()
    }).collect();

    // Duplicate the loops, change the cw by using the
    // first vertex and then iterating the loop in reverse
    let poly_clone = mesh.mpoly.clone();
    let loops_clone = mesh.mloop.clone();
    let loops = (0..count).flat_map(|j|{
        let loops_clone = loops_clone.clone();
        poly_clone.clone().into_iter().flat_map(move |poly| {
            let loopstart = poly.loopstart;
            let totloop = poly.totloop;
            let loops_clone = loops_clone.clone();
            (loopstart..loopstart+1).chain((loopstart+1..loopstart+totloop).rev()).map(move |i|{
                let mut mirror_loop = loops_clone[i as usize];
                mirror_loop.v += num_verts * j;
                mirror_loop.e += num_edges * j;
                mirror_loop
            })
        })
    }).collect();

    // Duplicate the polygons
    let polys_clone = mesh.mpoly.clone();
    let polys = (0..count).flat_map(|i|{
        polys_clone.iter().map(move |poly|{
            let mut mirror_poly = *poly;
            mirror_poly.loopstart += num_loops as u32 * i;
            mirror_poly
        })
    }).collect();


    // Duplicate the weights
    let weights = (0..count).flat_map(|_i|{
        mesh.dvert.iter().map(|weights|{
            weights.clone()
        })
    }).collect();
    mesh.mvert = mvert;
    mesh.medge = edges;
    mesh.mloopuv = uvs;
    mesh.mloop = loops;
    mesh.mpoly = polys;
    mesh.dvert = weights;

}

#[allow(dead_code)]
pub enum SubsurfModifierFlag{
	Incremental  = 1 << 0,
	DebugIncr    = 1 << 1,
	ControlEdges = 1 << 2,
	SubsurfUv    = 1 << 3,
}