use crate::read_u8;
use error::{Error, Result, UnsupportedFeature};
use huffman::{fill_default_mjpeg_tables, HuffmanDecoder, HuffmanTable};
use marker::Marker;
use parser::{AdobeColorTransform, AppData, CodingProcess, Component, Dimensions, EntropyCoding, FrameInfo,
parse_app, parse_com, parse_dht, parse_dqt, parse_dri, parse_sof, parse_sos, IccChunk,
ScanInfo};
use upsampler::Upsampler;
use std::cmp;
use std::io::Read;
use std::mem;
use std::ops::Range;
use std::sync::Arc;
use worker::{RowData, PlatformWorker, Worker};
pub const MAX_COMPONENTS: usize = 4;
static UNZIGZAG: [u8; 64] = [
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
];
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum PixelFormat {
L8,
RGB24,
CMYK32,
}
impl PixelFormat {
pub fn pixel_bytes(&self) -> usize {
match self {
PixelFormat::L8 => 1,
PixelFormat::RGB24 => 3,
PixelFormat::CMYK32 => 4,
}
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ImageInfo {
pub width: u16,
pub height: u16,
pub pixel_format: PixelFormat,
}
pub struct Decoder<R> {
reader: R,
frame: Option<FrameInfo>,
dc_huffman_tables: Vec<Option<HuffmanTable>>,
ac_huffman_tables: Vec<Option<HuffmanTable>>,
quantization_tables: [Option<Arc<[u16; 64]>>; 4],
restart_interval: u16,
color_transform: Option<AdobeColorTransform>,
is_jfif: bool,
is_mjpeg: bool,
icc_markers: Vec<IccChunk>,
coefficients: Vec<Vec<i16>>,
coefficients_finished: [u64; MAX_COMPONENTS],
}
impl<R: Read> Decoder<R> {
pub fn new(reader: R) -> Decoder<R> {
Decoder {
reader: reader,
frame: None,
dc_huffman_tables: vec![None, None, None, None],
ac_huffman_tables: vec![None, None, None, None],
quantization_tables: [None, None, None, None],
restart_interval: 0,
color_transform: None,
is_jfif: false,
is_mjpeg: false,
icc_markers: Vec::new(),
coefficients: Vec::new(),
coefficients_finished: [0; MAX_COMPONENTS],
}
}
pub fn info(&self) -> Option<ImageInfo> {
match self.frame {
Some(ref frame) => {
let pixel_format = match frame.components.len() {
1 => PixelFormat::L8,
3 => PixelFormat::RGB24,
4 => PixelFormat::CMYK32,
_ => panic!(),
};
Some(ImageInfo {
width: frame.output_size.width,
height: frame.output_size.height,
pixel_format: pixel_format,
})
},
None => None,
}
}
pub fn icc_profile(&self) -> Option<Vec<u8>> {
let mut marker_present: [Option<&IccChunk>; 256] = [None; 256];
let num_markers = self.icc_markers.len();
if num_markers == 0 && num_markers < 256 {
return None;
}
for chunk in &self.icc_markers {
if usize::from(chunk.num_markers) != num_markers {
return None;
}
if chunk.seq_no == 0 {
return None;
}
if marker_present[usize::from(chunk.seq_no)].is_some() {
return None;
} else {
marker_present[usize::from(chunk.seq_no)] = Some(chunk);
}
}
let mut data = Vec::new();
for &chunk in marker_present.get(1..=num_markers)? {
data.extend_from_slice(&chunk?.data);
}
Some(data)
}
pub fn read_info(&mut self) -> Result<()> {
self.decode_internal(true).map(|_| ())
}
pub fn scale(&mut self, requested_width: u16, requested_height: u16) -> Result<(u16, u16)> {
self.read_info()?;
let frame = self.frame.as_mut().unwrap();
let idct_size = crate::idct::choose_idct_size(frame.image_size, Dimensions{ width: requested_width, height: requested_height });
frame.update_idct_size(idct_size)?;
Ok((frame.output_size.width, frame.output_size.height))
}
pub fn decode(&mut self) -> Result<Vec<u8>> {
self.decode_internal(false)
}
fn decode_internal(&mut self, stop_after_metadata: bool) -> Result<Vec<u8>> {
if stop_after_metadata && self.frame.is_some() {
return Ok(Vec::new());
}
else if self.frame.is_none() && (read_u8(&mut self.reader)? != 0xFF || Marker::from_u8(read_u8(&mut self.reader)?) != Some(Marker::SOI)) {
return Err(Error::Format("first two bytes are not an SOI marker".to_owned()));
}
let mut previous_marker = Marker::SOI;
let mut pending_marker = None;
let mut worker = None;
let mut scans_processed = 0;
let mut planes = vec![Vec::new(); self.frame.as_ref().map_or(0, |frame| frame.components.len())];
loop {
let marker = match pending_marker.take() {
Some(m) => m,
None => self.read_marker()?,
};
match marker {
Marker::SOF(..) => {
if self.frame.is_some() {
return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
}
let frame = parse_sof(&mut self.reader, marker)?;
let component_count = frame.components.len();
if frame.is_differential {
return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
}
if frame.coding_process == CodingProcess::Lossless {
return Err(Error::Unsupported(UnsupportedFeature::Lossless));
}
if frame.entropy_coding == EntropyCoding::Arithmetic {
return Err(Error::Unsupported(UnsupportedFeature::ArithmeticEntropyCoding));
}
if frame.precision != 8 {
return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision(frame.precision)));
}
if component_count != 1 && component_count != 3 && component_count != 4 {
return Err(Error::Unsupported(UnsupportedFeature::ComponentCount(component_count as u8)));
}
let _ = Upsampler::new(&frame.components, frame.image_size.width, frame.image_size.height)?;
self.frame = Some(frame);
if stop_after_metadata {
return Ok(Vec::new());
}
planes = vec![Vec::new(); component_count];
},
Marker::SOS => {
if self.frame.is_none() {
return Err(Error::Format("scan encountered before frame".to_owned()));
}
if worker.is_none() {
worker = Some(PlatformWorker::new()?);
}
let frame = self.frame.clone().unwrap();
let scan = parse_sos(&mut self.reader, &frame)?;
if frame.coding_process == CodingProcess::DctProgressive && self.coefficients.is_empty() {
self.coefficients = frame.components.iter().map(|c| {
let block_count = c.block_size.width as usize * c.block_size.height as usize;
vec![0; block_count * 64]
}).collect();
}
let mut finished = [false; MAX_COMPONENTS];
if scan.successive_approximation_low == 0 {
for (&i, component_finished) in scan.component_indices.iter().zip(&mut finished) {
if self.coefficients_finished[i] == !0 {
continue;
}
for j in scan.spectral_selection.clone() {
self.coefficients_finished[i] |= 1 << j;
}
if self.coefficients_finished[i] == !0 {
*component_finished = true;
}
}
}
let (marker, data) = self.decode_scan(&frame, &scan, worker.as_mut().unwrap(), &finished)?;
if let Some(data) = data {
for (i, plane) in data.into_iter().enumerate().filter(|&(_, ref plane)| !plane.is_empty()) {
if self.coefficients_finished[i] == !0 {
planes[i] = plane;
}
}
}
pending_marker = marker;
scans_processed += 1;
},
Marker::DQT => {
let tables = parse_dqt(&mut self.reader)?;
for (i, &table) in tables.iter().enumerate() {
if let Some(table) = table {
let mut unzigzagged_table = [0u16; 64];
for j in 0 .. 64 {
unzigzagged_table[UNZIGZAG[j] as usize] = table[j];
}
self.quantization_tables[i] = Some(Arc::new(unzigzagged_table));
}
}
},
Marker::DHT => {
let is_baseline = self.frame.as_ref().map(|frame| frame.is_baseline);
let (dc_tables, ac_tables) = parse_dht(&mut self.reader, is_baseline)?;
let current_dc_tables = mem::replace(&mut self.dc_huffman_tables, vec![]);
self.dc_huffman_tables = dc_tables.into_iter()
.zip(current_dc_tables.into_iter())
.map(|(a, b)| a.or(b))
.collect();
let current_ac_tables = mem::replace(&mut self.ac_huffman_tables, vec![]);
self.ac_huffman_tables = ac_tables.into_iter()
.zip(current_ac_tables.into_iter())
.map(|(a, b)| a.or(b))
.collect();
},
Marker::DAC => return Err(Error::Unsupported(UnsupportedFeature::ArithmeticEntropyCoding)),
Marker::DRI => self.restart_interval = parse_dri(&mut self.reader)?,
Marker::COM => {
let _comment = parse_com(&mut self.reader)?;
},
Marker::APP(..) => {
if let Some(data) = parse_app(&mut self.reader, marker)? {
match data {
AppData::Adobe(color_transform) => self.color_transform = Some(color_transform),
AppData::Jfif => {
self.is_jfif = true;
},
AppData::Avi1 => self.is_mjpeg = true,
AppData::Icc(icc) => self.icc_markers.push(icc),
}
}
},
Marker::RST(..) => {
if previous_marker != Marker::SOS {
return Err(Error::Format("RST found outside of entropy-coded data".to_owned()));
}
},
Marker::DNL => {
if previous_marker != Marker::SOS || scans_processed != 1 {
return Err(Error::Format("DNL is only allowed immediately after the first scan".to_owned()));
}
return Err(Error::Unsupported(UnsupportedFeature::DNL));
},
Marker::DHP | Marker::EXP => return Err(Error::Unsupported(UnsupportedFeature::Hierarchical)),
Marker::EOI => break,
_ => return Err(Error::Format(format!("{:?} marker found where not allowed", marker))),
}
previous_marker = marker;
}
if self.frame.is_none() {
return Err(Error::Format("end of image encountered before frame".to_owned()));
}
let frame = self.frame.as_ref().unwrap();
if frame.coding_process == CodingProcess::DctProgressive && self.coefficients.len() == frame.components.len() {
for (i, component) in frame.components.iter().enumerate() {
if self.coefficients_finished[i] == !0 {
continue;
}
let quantization_table = match self.quantization_tables[component.quantization_table_index].clone() {
Some(quantization_table) => quantization_table,
None => continue,
};
if worker.is_none() {
worker = Some(PlatformWorker::new()?);
}
let worker = worker.as_mut().unwrap();
let row_data = RowData {
index: i,
component: component.clone(),
quantization_table,
};
worker.start(row_data)?;
let coefficients_per_mcu_row = usize::from(component.block_size.width) * usize::from(component.vertical_sampling_factor) * 64;
for mcu_y in 0..frame.mcu_size.height {
let row_coefficients = {
let offset = usize::from(mcu_y) * coefficients_per_mcu_row;
self.coefficients[i][offset .. offset + coefficients_per_mcu_row].to_vec()
};
worker.append_row((i, row_coefficients))?;
}
planes[i] = worker.get_result(i)?;
}
}
compute_image(&frame.components, planes, frame.output_size, self.is_jfif, self.color_transform)
}
fn read_marker(&mut self) -> Result<Marker> {
loop {
while read_u8(&mut self.reader)? != 0xFF {}
let mut byte = read_u8(&mut self.reader)?;
while byte == 0xFF {
byte = read_u8(&mut self.reader)?;
}
if byte != 0x00 && byte != 0xFF {
return Ok(Marker::from_u8(byte).unwrap());
}
}
}
fn decode_scan(&mut self,
frame: &FrameInfo,
scan: &ScanInfo,
worker: &mut PlatformWorker,
finished: &[bool; MAX_COMPONENTS])
-> Result<(Option<Marker>, Option<Vec<Vec<u8>>>)> {
assert!(scan.component_indices.len() <= MAX_COMPONENTS);
let components: Vec<Component> = scan.component_indices.iter()
.map(|&i| frame.components[i].clone())
.collect();
if components.iter().any(|component| self.quantization_tables[component.quantization_table_index].is_none()) {
return Err(Error::Format("use of unset quantization table".to_owned()));
}
if self.is_mjpeg {
fill_default_mjpeg_tables(scan, &mut self.dc_huffman_tables, &mut self.ac_huffman_tables);
}
if scan.spectral_selection.start == 0 &&
scan.dc_table_indices.iter().any(|&i| self.dc_huffman_tables[i].is_none()) {
return Err(Error::Format("scan makes use of unset dc huffman table".to_owned()));
}
if scan.spectral_selection.end > 1 &&
scan.ac_table_indices.iter().any(|&i| self.ac_huffman_tables[i].is_none()) {
return Err(Error::Format("scan makes use of unset ac huffman table".to_owned()));
}
for (i, component) in components.iter().enumerate() {
if finished[i] {
let row_data = RowData {
index: i,
component: component.clone(),
quantization_table: self.quantization_tables[component.quantization_table_index].clone().unwrap(),
};
worker.start(row_data)?;
}
}
let is_progressive = frame.coding_process == CodingProcess::DctProgressive;
let is_interleaved = components.len() > 1;
let mut dummy_block = [0i16; 64];
let mut huffman = HuffmanDecoder::new();
let mut dc_predictors = [0i16; MAX_COMPONENTS];
let mut mcus_left_until_restart = self.restart_interval;
let mut expected_rst_num = 0;
let mut eob_run = 0;
let mut mcu_row_coefficients = Vec::with_capacity(components.len());
if !is_progressive {
for (_, component) in components.iter().enumerate().filter(|&(i, _)| finished[i]) {
let coefficients_per_mcu_row = component.block_size.width as usize * component.vertical_sampling_factor as usize * 64;
mcu_row_coefficients.push(vec![0i16; coefficients_per_mcu_row]);
}
}
let (mcu_horizontal_samples, mcu_vertical_samples) = if is_interleaved {
let horizontal = components.iter().map(|component| component.horizontal_sampling_factor as u16).collect::<Vec<_>>();
let vertical = components.iter().map(|component| component.vertical_sampling_factor as u16).collect::<Vec<_>>();
(horizontal, vertical)
} else {
(vec![1], vec![1])
};
let (max_mcu_x, max_mcu_y) = if is_interleaved {
(frame.mcu_size.width, frame.mcu_size.height)
} else {
(components[0].block_size.width, components[0].block_size.height)
};
for mcu_y in 0..max_mcu_y {
if mcu_y * 8 >= frame.image_size.height {
break;
}
for mcu_x in 0..max_mcu_x {
if mcu_x * 8 >= frame.image_size.width {
break;
}
if self.restart_interval > 0 {
if mcus_left_until_restart == 0 {
match huffman.take_marker(&mut self.reader)? {
Some(Marker::RST(n)) => {
if n != expected_rst_num {
return Err(Error::Format(format!("found RST{} where RST{} was expected", n, expected_rst_num)));
}
huffman.reset();
dc_predictors = [0i16; MAX_COMPONENTS];
eob_run = 0;
expected_rst_num = (expected_rst_num + 1) % 8;
mcus_left_until_restart = self.restart_interval;
},
Some(marker) => return Err(Error::Format(format!("found marker {:?} inside scan where RST{} was expected", marker, expected_rst_num))),
None => return Err(Error::Format(format!("no marker found where RST{} was expected", expected_rst_num))),
}
}
mcus_left_until_restart -= 1;
}
for (i, component) in components.iter().enumerate() {
for v_pos in 0..mcu_vertical_samples[i] {
for h_pos in 0..mcu_horizontal_samples[i] {
let coefficients = if is_progressive {
let block_y = (mcu_y * mcu_vertical_samples[i] + v_pos) as usize;
let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize;
let block_offset = (block_y * component.block_size.width as usize + block_x) * 64;
&mut self.coefficients[scan.component_indices[i]][block_offset..block_offset + 64]
} else if finished[i] {
let mcu_batch_current_row = if is_interleaved {
0
} else {
mcu_y % component.vertical_sampling_factor as u16
};
let block_y = (mcu_batch_current_row * mcu_vertical_samples[i] + v_pos) as usize;
let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize;
let block_offset = (block_y * component.block_size.width as usize + block_x) * 64;
&mut mcu_row_coefficients[i][block_offset..block_offset + 64]
} else {
&mut dummy_block[..]
};
if scan.successive_approximation_high == 0 {
decode_block(&mut self.reader,
coefficients,
&mut huffman,
self.dc_huffman_tables[scan.dc_table_indices[i]].as_ref(),
self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
scan.spectral_selection.clone(),
scan.successive_approximation_low,
&mut eob_run,
&mut dc_predictors[i])?;
}
else {
decode_block_successive_approximation(&mut self.reader,
coefficients,
&mut huffman,
self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
scan.spectral_selection.clone(),
scan.successive_approximation_low,
&mut eob_run)?;
}
}
}
}
}
for (i, component) in components.iter().enumerate() {
if finished[i] {
if !is_interleaved && (mcu_y + 1) * 8 < frame.image_size.height {
if (mcu_y + 1) % component.vertical_sampling_factor as u16 > 0 {
continue;
}
}
let coefficients_per_mcu_row = component.block_size.width as usize * component.vertical_sampling_factor as usize * 64;
let row_coefficients = if is_progressive {
let worker_mcu_y = if is_interleaved {
mcu_y
} else {
mcu_y / component.vertical_sampling_factor as u16
};
let offset = worker_mcu_y as usize * coefficients_per_mcu_row;
self.coefficients[scan.component_indices[i]][offset .. offset + coefficients_per_mcu_row].to_vec()
} else {
mem::replace(&mut mcu_row_coefficients[i], vec![0i16; coefficients_per_mcu_row])
};
worker.append_row((i, row_coefficients))?;
}
}
}
let mut marker = huffman.take_marker(&mut self.reader)?;
while let Some(Marker::RST(_)) = marker {
marker = self.read_marker().ok();
}
if finished.iter().any(|&c| c) {
let mut data = vec![Vec::new(); frame.components.len()];
for (i, &component_index) in scan.component_indices.iter().enumerate() {
if finished[i] {
data[component_index] = worker.get_result(i)?;
}
}
Ok((marker, Some(data)))
}
else {
Ok((marker, None))
}
}
}
fn decode_block<R: Read>(reader: &mut R,
coefficients: &mut [i16],
huffman: &mut HuffmanDecoder,
dc_table: Option<&HuffmanTable>,
ac_table: Option<&HuffmanTable>,
spectral_selection: Range<u8>,
successive_approximation_low: u8,
eob_run: &mut u16,
dc_predictor: &mut i16) -> Result<()> {
debug_assert_eq!(coefficients.len(), 64);
if spectral_selection.start == 0 {
let value = huffman.decode(reader, dc_table.unwrap())?;
let diff = match value {
0 => 0,
1..=11 => huffman.receive_extend(reader, value)?,
_ => {
return Err(Error::Format("invalid DC difference magnitude category".to_owned()));
},
};
*dc_predictor = dc_predictor.wrapping_add(diff);
coefficients[0] = *dc_predictor << successive_approximation_low;
}
let mut index = cmp::max(spectral_selection.start, 1);
if index < spectral_selection.end && *eob_run > 0 {
*eob_run -= 1;
return Ok(());
}
while index < spectral_selection.end {
if let Some((value, run)) = huffman.decode_fast_ac(reader, ac_table.unwrap())? {
index += run;
if index >= spectral_selection.end {
break;
}
coefficients[UNZIGZAG[index as usize] as usize] = value << successive_approximation_low;
index += 1;
}
else {
let byte = huffman.decode(reader, ac_table.unwrap())?;
let r = byte >> 4;
let s = byte & 0x0f;
if s == 0 {
match r {
15 => index += 16,
_ => {
*eob_run = (1 << r) - 1;
if r > 0 {
*eob_run += huffman.get_bits(reader, r)?;
}
break;
},
}
}
else {
index += r;
if index >= spectral_selection.end {
break;
}
coefficients[UNZIGZAG[index as usize] as usize] = huffman.receive_extend(reader, s)? << successive_approximation_low;
index += 1;
}
}
}
Ok(())
}
fn decode_block_successive_approximation<R: Read>(reader: &mut R,
coefficients: &mut [i16],
huffman: &mut HuffmanDecoder,
ac_table: Option<&HuffmanTable>,
spectral_selection: Range<u8>,
successive_approximation_low: u8,
eob_run: &mut u16) -> Result<()> {
debug_assert_eq!(coefficients.len(), 64);
let bit = 1 << successive_approximation_low;
if spectral_selection.start == 0 {
if huffman.get_bits(reader, 1)? == 1 {
coefficients[0] |= bit;
}
}
else {
if *eob_run > 0 {
*eob_run -= 1;
refine_non_zeroes(reader, coefficients, huffman, spectral_selection, 64, bit)?;
return Ok(());
}
let mut index = spectral_selection.start;
while index < spectral_selection.end {
let byte = huffman.decode(reader, ac_table.unwrap())?;
let r = byte >> 4;
let s = byte & 0x0f;
let mut zero_run_length = r;
let mut value = 0;
match s {
0 => {
match r {
15 => {
},
_ => {
*eob_run = (1 << r) - 1;
if r > 0 {
*eob_run += huffman.get_bits(reader, r)?;
}
zero_run_length = 64;
},
}
},
1 => {
if huffman.get_bits(reader, 1)? == 1 {
value = bit;
}
else {
value = -bit;
}
},
_ => return Err(Error::Format("unexpected huffman code".to_owned())),
}
let range = Range {
start: index,
end: spectral_selection.end,
};
index = refine_non_zeroes(reader, coefficients, huffman, range, zero_run_length, bit)?;
if value != 0 {
coefficients[UNZIGZAG[index as usize] as usize] = value;
}
index += 1;
}
}
Ok(())
}
fn refine_non_zeroes<R: Read>(reader: &mut R,
coefficients: &mut [i16],
huffman: &mut HuffmanDecoder,
range: Range<u8>,
zrl: u8,
bit: i16) -> Result<u8> {
debug_assert_eq!(coefficients.len(), 64);
let last = range.end - 1;
let mut zero_run_length = zrl;
for i in range {
let index = UNZIGZAG[i as usize] as usize;
if coefficients[index] == 0 {
if zero_run_length == 0 {
return Ok(i);
}
zero_run_length -= 1;
}
else if huffman.get_bits(reader, 1)? == 1 && coefficients[index] & bit == 0 {
if coefficients[index] > 0 {
coefficients[index] += bit;
}
else {
coefficients[index] -= bit;
}
}
}
Ok(last)
}
fn compute_image(components: &[Component],
mut data: Vec<Vec<u8>>,
output_size: Dimensions,
is_jfif: bool,
color_transform: Option<AdobeColorTransform>) -> Result<Vec<u8>> {
if data.is_empty() || data.iter().any(Vec::is_empty) {
return Err(Error::Format("not all components have data".to_owned()));
}
if components.len() == 1 {
let component = &components[0];
let mut decoded: Vec<u8> = data.remove(0);
let width = component.size.width as usize;
let height = component.size.height as usize;
let size = width * height;
let line_stride = component.block_size.width as usize * component.dct_scale;
if usize::from(output_size.width) != line_stride {
let mut buffer = vec![0u8; width];
for y in 1..height {
let destination_idx = y * width;
let source_idx = y * line_stride;
buffer.copy_from_slice(&decoded[source_idx..][..width]);
let destination = &mut decoded[destination_idx..][..width];
destination.copy_from_slice(&buffer);
}
}
decoded.resize(size, 0);
Ok(decoded)
}
else {
compute_image_parallel(components, data, output_size, is_jfif, color_transform)
}
}
#[cfg(feature="rayon")]
fn compute_image_parallel(components: &[Component],
data: Vec<Vec<u8>>,
output_size: Dimensions,
is_jfif: bool,
color_transform: Option<AdobeColorTransform>) -> Result<Vec<u8>> {
use rayon::prelude::*;
let color_convert_func = choose_color_convert_func(components.len(), is_jfif, color_transform)?;
let upsampler = Upsampler::new(components, output_size.width, output_size.height)?;
let line_size = output_size.width as usize * components.len();
let mut image = vec![0u8; line_size * output_size.height as usize];
image.par_chunks_mut(line_size)
.with_max_len(1)
.enumerate()
.for_each(|(row, line)| {
upsampler.upsample_and_interleave_row(&data, row, output_size.width as usize, line);
color_convert_func(line);
});
Ok(image)
}
#[cfg(not(feature="rayon"))]
fn compute_image_parallel(components: &[Component],
data: Vec<Vec<u8>>,
output_size: Dimensions,
is_jfif: bool,
color_transform: Option<AdobeColorTransform>) -> Result<Vec<u8>> {
let color_convert_func = choose_color_convert_func(components.len(), is_jfif, color_transform)?;
let upsampler = Upsampler::new(components, output_size.width, output_size.height)?;
let line_size = output_size.width as usize * components.len();
let mut image = vec![0u8; line_size * output_size.height as usize];
for (row, line) in image.chunks_mut(line_size)
.enumerate() {
upsampler.upsample_and_interleave_row(&data, row, output_size.width as usize, line);
color_convert_func(line);
}
Ok(image)
}
fn choose_color_convert_func(component_count: usize,
_is_jfif: bool,
color_transform: Option<AdobeColorTransform>)
-> Result<fn(&mut [u8])> {
match component_count {
3 => {
if color_transform == Some(AdobeColorTransform::Unknown) {
Ok(color_convert_line_null)
}
else {
Ok(color_convert_line_ycbcr)
}
},
4 => {
match color_transform {
Some(AdobeColorTransform::Unknown) => Ok(color_convert_line_cmyk),
Some(_) => Ok(color_convert_line_ycck),
None => Err(Error::Format("4 components without Adobe APP14 metadata to indicate color space".to_owned())),
}
},
_ => panic!(),
}
}
fn color_convert_line_null(_data: &mut [u8]) {
}
fn color_convert_line_ycbcr(data: &mut [u8]) {
for chunk in data.chunks_exact_mut(3) {
let (r, g, b) = ycbcr_to_rgb(chunk[0], chunk[1], chunk[2]);
chunk[0] = r;
chunk[1] = g;
chunk[2] = b;
}
}
fn color_convert_line_ycck(data: &mut [u8]) {
for chunk in data.chunks_exact_mut(4) {
let (r, g, b) = ycbcr_to_rgb(chunk[0], chunk[1], chunk[2]);
let k = chunk[3];
chunk[0] = r;
chunk[1] = g;
chunk[2] = b;
chunk[3] = 255 - k;
}
}
fn color_convert_line_cmyk(data: &mut [u8]) {
for chunk in data.chunks_exact_mut(4) {
chunk[0] = 255 - chunk[0];
chunk[1] = 255 - chunk[1];
chunk[2] = 255 - chunk[2];
chunk[3] = 255 - chunk[3];
}
}
fn ycbcr_to_rgb(y: u8, cb: u8, cr: u8) -> (u8, u8, u8) {
let y = y as f32;
let cb = cb as f32 - 128.0;
let cr = cr as f32 - 128.0;
let r = y + 1.40200 * cr;
let g = y - 0.34414 * cb - 0.71414 * cr;
let b = y + 1.77200 * cb;
(clamp_to_u8((r + 0.5) as i32) as u8,
clamp_to_u8((g + 0.5) as i32) as u8,
clamp_to_u8((b + 0.5) as i32) as u8)
}
fn clamp_to_u8(value: i32) -> i32 {
let value = std::cmp::max(value, 0);
std::cmp::min(value, 255)
}