1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
use crate::read_u8;
use error::{Error, Result, UnsupportedFeature};
use huffman::{fill_default_mjpeg_tables, HuffmanDecoder, HuffmanTable};
use marker::Marker;
use parser::{AdobeColorTransform, AppData, CodingProcess, Component, Dimensions, EntropyCoding, FrameInfo,
             parse_app, parse_com, parse_dht, parse_dqt, parse_dri, parse_sof, parse_sos, IccChunk,
             ScanInfo};
use upsampler::Upsampler;
use std::cmp;
use std::io::Read;
use std::mem;
use std::ops::Range;
use std::sync::Arc;
use worker::{RowData, PlatformWorker, Worker};

pub const MAX_COMPONENTS: usize = 4;

static UNZIGZAG: [u8; 64] = [
     0,  1,  8, 16,  9,  2,  3, 10,
    17, 24, 32, 25, 18, 11,  4,  5,
    12, 19, 26, 33, 40, 48, 41, 34,
    27, 20, 13,  6,  7, 14, 21, 28,
    35, 42, 49, 56, 57, 50, 43, 36,
    29, 22, 15, 23, 30, 37, 44, 51,
    58, 59, 52, 45, 38, 31, 39, 46,
    53, 60, 61, 54, 47, 55, 62, 63,
];

/// An enumeration over combinations of color spaces and bit depths a pixel can have.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum PixelFormat {
    /// Luminance (grayscale), 8 bits
    L8,
    /// RGB, 8 bits per channel
    RGB24,
    /// CMYK, 8 bits per channel
    CMYK32,
}

impl PixelFormat {
    /// Determine the size in bytes of each pixel in this format
    pub fn pixel_bytes(&self) -> usize {
        match self {
            PixelFormat::L8 => 1,
            PixelFormat::RGB24 => 3,
            PixelFormat::CMYK32 => 4,
        }
    }
}

/// Represents metadata of an image.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ImageInfo {
    /// The width of the image, in pixels.
    pub width: u16,
    /// The height of the image, in pixels.
    pub height: u16,
    /// The pixel format of the image.
    pub pixel_format: PixelFormat,
}

/// JPEG decoder
pub struct Decoder<R> {
    reader: R,

    frame: Option<FrameInfo>,
    dc_huffman_tables: Vec<Option<HuffmanTable>>,
    ac_huffman_tables: Vec<Option<HuffmanTable>>,
    quantization_tables: [Option<Arc<[u16; 64]>>; 4],

    restart_interval: u16,
    color_transform: Option<AdobeColorTransform>,
    is_jfif: bool,
    is_mjpeg: bool,

    icc_markers: Vec<IccChunk>,

    // Used for progressive JPEGs.
    coefficients: Vec<Vec<i16>>,
    // Bitmask of which coefficients has been completely decoded.
    coefficients_finished: [u64; MAX_COMPONENTS],
}

impl<R: Read> Decoder<R> {
    /// Creates a new `Decoder` using the reader `reader`.
    pub fn new(reader: R) -> Decoder<R> {
        Decoder {
            reader: reader,
            frame: None,
            dc_huffman_tables: vec![None, None, None, None],
            ac_huffman_tables: vec![None, None, None, None],
            quantization_tables: [None, None, None, None],
            restart_interval: 0,
            color_transform: None,
            is_jfif: false,
            is_mjpeg: false,
            icc_markers: Vec::new(),
            coefficients: Vec::new(),
            coefficients_finished: [0; MAX_COMPONENTS],
        }
    }

    /// Returns metadata about the image.
    ///
    /// The returned value will be `None` until a call to either `read_info` or `decode` has
    /// returned `Ok`.
    pub fn info(&self) -> Option<ImageInfo> {
        match self.frame {
            Some(ref frame) => {
                let pixel_format = match frame.components.len() {
                    1 => PixelFormat::L8,
                    3 => PixelFormat::RGB24,
                    4 => PixelFormat::CMYK32,
                    _ => panic!(),
                };

                Some(ImageInfo {
                    width: frame.output_size.width,
                    height: frame.output_size.height,
                    pixel_format: pixel_format,
                })
            },
            None => None,
        }
    }

    /// Returns the embeded icc profile if the image contains one.
    pub fn icc_profile(&self) -> Option<Vec<u8>> {
        let mut marker_present: [Option<&IccChunk>; 256] = [None; 256];
        let num_markers = self.icc_markers.len();
        if num_markers == 0 && num_markers < 256 {
            return None;
        }
        // check the validity of the markers
        for chunk in &self.icc_markers {
            if usize::from(chunk.num_markers) != num_markers {
                // all the lengths must match
                return None;
            }
            if chunk.seq_no == 0 {
                return None;
            }
            if marker_present[usize::from(chunk.seq_no)].is_some() {
                // duplicate seq_no
                return None;
            } else {
                marker_present[usize::from(chunk.seq_no)] = Some(chunk);
            }
        }

        // assemble them together by seq_no failing if any are missing
        let mut data = Vec::new();
        // seq_no's start at 1
        for &chunk in marker_present.get(1..=num_markers)? {
            data.extend_from_slice(&chunk?.data);
        }
        Some(data)
    }

    /// Tries to read metadata from the image without decoding it.
    ///
    /// If successful, the metadata can be obtained using the `info` method.
    pub fn read_info(&mut self) -> Result<()> {
        self.decode_internal(true).map(|_| ())
    }

    /// Configure the decoder to scale the image during decoding.
    ///
    /// This efficiently scales the image by the smallest supported scale
    /// factor that produces an image larger than or equal to the requested
    /// size in at least one axis. The currently implemented scale factors
    /// are 1/8, 1/4, 1/2 and 1.
    ///
    /// To generate a thumbnail of an exact size, pass the desired size and
    /// then scale to the final size using a traditional resampling algorithm.
    pub fn scale(&mut self, requested_width: u16, requested_height: u16) -> Result<(u16, u16)> {
        self.read_info()?;
        let frame = self.frame.as_mut().unwrap();
        let idct_size = crate::idct::choose_idct_size(frame.image_size, Dimensions{ width: requested_width, height: requested_height });
        frame.update_idct_size(idct_size)?;
        Ok((frame.output_size.width, frame.output_size.height))
    }

    /// Decodes the image and returns the decoded pixels if successful.
    pub fn decode(&mut self) -> Result<Vec<u8>> {
        self.decode_internal(false)
    }

    fn decode_internal(&mut self, stop_after_metadata: bool) -> Result<Vec<u8>> {
        if stop_after_metadata && self.frame.is_some() {
            // The metadata has already been read.
            return Ok(Vec::new());
        }
        else if self.frame.is_none() && (read_u8(&mut self.reader)? != 0xFF || Marker::from_u8(read_u8(&mut self.reader)?) != Some(Marker::SOI)) {
            return Err(Error::Format("first two bytes are not an SOI marker".to_owned()));
        }

        let mut previous_marker = Marker::SOI;
        let mut pending_marker = None;
        let mut worker = None;
        let mut scans_processed = 0;
        let mut planes = vec![Vec::new(); self.frame.as_ref().map_or(0, |frame| frame.components.len())];

        loop {
            let marker = match pending_marker.take() {
                Some(m) => m,
                None => self.read_marker()?,
            };

            match marker {
                // Frame header
                Marker::SOF(..) => {
                    // Section 4.10
                    // "An image contains only one frame in the cases of sequential and
                    //  progressive coding processes; an image contains multiple frames for the
                    //  hierarchical mode."
                    if self.frame.is_some() {
                        return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
                    }

                    let frame = parse_sof(&mut self.reader, marker)?;
                    let component_count = frame.components.len();

                    if frame.is_differential {
                        return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
                    }
                    if frame.coding_process == CodingProcess::Lossless {
                        return Err(Error::Unsupported(UnsupportedFeature::Lossless));
                    }
                    if frame.entropy_coding == EntropyCoding::Arithmetic {
                        return Err(Error::Unsupported(UnsupportedFeature::ArithmeticEntropyCoding));
                    }
                    if frame.precision != 8 {
                        return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision(frame.precision)));
                    }
                    if component_count != 1 && component_count != 3 && component_count != 4 {
                        return Err(Error::Unsupported(UnsupportedFeature::ComponentCount(component_count as u8)));
                    }

                    // Make sure we support the subsampling ratios used.
                    let _ = Upsampler::new(&frame.components, frame.image_size.width, frame.image_size.height)?;

                    self.frame = Some(frame);

                    if stop_after_metadata {
                        return Ok(Vec::new());
                    }

                    planes = vec![Vec::new(); component_count];
                },

                // Scan header
                Marker::SOS => {
                    if self.frame.is_none() {
                        return Err(Error::Format("scan encountered before frame".to_owned()));
                    }
                    if worker.is_none() {
                        worker = Some(PlatformWorker::new()?);
                    }

                    let frame = self.frame.clone().unwrap();
                    let scan = parse_sos(&mut self.reader, &frame)?;

                    if frame.coding_process == CodingProcess::DctProgressive && self.coefficients.is_empty() {
                        self.coefficients = frame.components.iter().map(|c| {
                            let block_count = c.block_size.width as usize * c.block_size.height as usize;
                            vec![0; block_count * 64]
                        }).collect();
                    }

                    // This was previously buggy, so let's explain the log here a bit. When a
                    // progressive frame is encoded then the coefficients (DC, AC) of each
                    // component (=color plane) can be split amongst scans. In particular it can
                    // happen or at least occurs in the wild that a scan contains coefficient 0 of
                    // all components. If now one but not all components had all other coefficients
                    // delivered in previous scans then such a scan contains all components but
                    // completes only some of them! (This is technically NOT permitted for all
                    // other coefficients as the standard dictates that scans with coefficients
                    // other than the 0th must only contain ONE component so we would either
                    // complete it or not. We may want to detect and error in case more component
                    // are part of a scan than allowed.) What a weird edge case.
                    //
                    // But this means we track precisely which components get completed here.
                    let mut finished = [false; MAX_COMPONENTS];

                    if scan.successive_approximation_low == 0 {
                        for (&i, component_finished) in scan.component_indices.iter().zip(&mut finished) {
                            if self.coefficients_finished[i] == !0 {
                                continue;
                            }
                            for j in scan.spectral_selection.clone() {
                                self.coefficients_finished[i] |= 1 << j;
                            }
                            if self.coefficients_finished[i] == !0 {
                                *component_finished = true;
                            }
                        }
                    }

                    let (marker, data) = self.decode_scan(&frame, &scan, worker.as_mut().unwrap(), &finished)?;

                    if let Some(data) = data {
                        for (i, plane) in data.into_iter().enumerate().filter(|&(_, ref plane)| !plane.is_empty()) {
                            if self.coefficients_finished[i] == !0 {
                                planes[i] = plane;
                            }
                        }
                    }

                    pending_marker = marker;
                    scans_processed += 1;
                },

                // Table-specification and miscellaneous markers
                // Quantization table-specification
                Marker::DQT => {
                    let tables = parse_dqt(&mut self.reader)?;

                    for (i, &table) in tables.iter().enumerate() {
                        if let Some(table) = table {
                            let mut unzigzagged_table = [0u16; 64];

                            for j in 0 .. 64 {
                                unzigzagged_table[UNZIGZAG[j] as usize] = table[j];
                            }

                            self.quantization_tables[i] = Some(Arc::new(unzigzagged_table));
                        }
                    }
                },
                // Huffman table-specification
                Marker::DHT => {
                    let is_baseline = self.frame.as_ref().map(|frame| frame.is_baseline);
                    let (dc_tables, ac_tables) = parse_dht(&mut self.reader, is_baseline)?;

                    let current_dc_tables = mem::replace(&mut self.dc_huffman_tables, vec![]);
                    self.dc_huffman_tables = dc_tables.into_iter()
                                                      .zip(current_dc_tables.into_iter())
                                                      .map(|(a, b)| a.or(b))
                                                      .collect();

                    let current_ac_tables = mem::replace(&mut self.ac_huffman_tables, vec![]);
                    self.ac_huffman_tables = ac_tables.into_iter()
                                                      .zip(current_ac_tables.into_iter())
                                                      .map(|(a, b)| a.or(b))
                                                      .collect();
                },
                // Arithmetic conditioning table-specification
                Marker::DAC => return Err(Error::Unsupported(UnsupportedFeature::ArithmeticEntropyCoding)),
                // Restart interval definition
                Marker::DRI => self.restart_interval = parse_dri(&mut self.reader)?,
                // Comment
                Marker::COM => {
                    let _comment = parse_com(&mut self.reader)?;
                },
                // Application data
                Marker::APP(..) => {
                    if let Some(data) = parse_app(&mut self.reader, marker)? {
                        match data {
                            AppData::Adobe(color_transform) => self.color_transform = Some(color_transform),
                            AppData::Jfif => {
                                // From the JFIF spec:
                                // "The APP0 marker is used to identify a JPEG FIF file.
                                //     The JPEG FIF APP0 marker is mandatory right after the SOI marker."
                                // Some JPEGs in the wild does not follow this though, so we allow
                                // JFIF headers anywhere APP0 markers are allowed.
                                /*
                                if previous_marker != Marker::SOI {
                                    return Err(Error::Format("the JFIF APP0 marker must come right after the SOI marker".to_owned()));
                                }
                                */

                                self.is_jfif = true;
                            },
                            AppData::Avi1 => self.is_mjpeg = true,
                            AppData::Icc(icc) => self.icc_markers.push(icc),
                        }
                    }
                },
                // Restart
                Marker::RST(..) => {
                    // Some encoders emit a final RST marker after entropy-coded data, which
                    // decode_scan does not take care of. So if we encounter one, we ignore it.
                    if previous_marker != Marker::SOS {
                        return Err(Error::Format("RST found outside of entropy-coded data".to_owned()));
                    }
                },

                // Define number of lines
                Marker::DNL => {
                    // Section B.2.1
                    // "If a DNL segment (see B.2.5) is present, it shall immediately follow the first scan."
                    if previous_marker != Marker::SOS || scans_processed != 1 {
                        return Err(Error::Format("DNL is only allowed immediately after the first scan".to_owned()));
                    }

                    return Err(Error::Unsupported(UnsupportedFeature::DNL));
                },

                // Hierarchical mode markers
                Marker::DHP | Marker::EXP => return Err(Error::Unsupported(UnsupportedFeature::Hierarchical)),

                // End of image
                Marker::EOI => break,

                _ => return Err(Error::Format(format!("{:?} marker found where not allowed", marker))),
            }

            previous_marker = marker;
        }

        if self.frame.is_none() {
            return Err(Error::Format("end of image encountered before frame".to_owned()));
        }

        let frame = self.frame.as_ref().unwrap();

        // If we're decoding a progressive jpeg and a component is unfinished, render what we've got
        if frame.coding_process == CodingProcess::DctProgressive && self.coefficients.len() == frame.components.len() {
            for (i, component) in frame.components.iter().enumerate() {
                // Only dealing with unfinished components
                if self.coefficients_finished[i] == !0 {
                    continue;
                }

                let quantization_table = match self.quantization_tables[component.quantization_table_index].clone() {
                    Some(quantization_table) => quantization_table,
                    None => continue,
                };

                // Get the worker prepared
                if worker.is_none() {
                    worker = Some(PlatformWorker::new()?);
                }
                let worker = worker.as_mut().unwrap();
                let row_data = RowData {
                    index: i,
                    component: component.clone(),
                    quantization_table,
                };
                worker.start(row_data)?;

                // Send the rows over to the worker and collect the result
                let coefficients_per_mcu_row = usize::from(component.block_size.width) * usize::from(component.vertical_sampling_factor) * 64;
                for mcu_y in 0..frame.mcu_size.height {
                    let row_coefficients = {
                        let offset = usize::from(mcu_y) * coefficients_per_mcu_row;
                        self.coefficients[i][offset .. offset + coefficients_per_mcu_row].to_vec()
                    };

                    worker.append_row((i, row_coefficients))?;
                }
                planes[i] = worker.get_result(i)?;
            }
        }

        compute_image(&frame.components, planes, frame.output_size, self.is_jfif, self.color_transform)
    }

    fn read_marker(&mut self) -> Result<Marker> {
        loop {
            // This should be an error as the JPEG spec doesn't allow extraneous data between marker segments.
            // libjpeg allows this though and there are images in the wild utilising it, so we are
            // forced to support this behavior.
            // Sony Ericsson P990i is an example of a device which produce this sort of JPEGs.
            while read_u8(&mut self.reader)? != 0xFF {}

            // Section B.1.1.2
            // All markers are assigned two-byte codes: an X’FF’ byte followed by a
            // byte which is not equal to 0 or X’FF’ (see Table B.1). Any marker may
            // optionally be preceded by any number of fill bytes, which are bytes
            // assigned code X’FF’.
            let mut byte = read_u8(&mut self.reader)?;

            // Section B.1.1.2
            // "Any marker may optionally be preceded by any number of fill bytes, which are bytes assigned code X’FF’."
            while byte == 0xFF {
                byte = read_u8(&mut self.reader)?;
            }

            if byte != 0x00 && byte != 0xFF {
                return Ok(Marker::from_u8(byte).unwrap());
            }
        }
    }

    fn decode_scan(&mut self,
                   frame: &FrameInfo,
                   scan: &ScanInfo,
                   worker: &mut PlatformWorker,
                   finished: &[bool; MAX_COMPONENTS])
                   -> Result<(Option<Marker>, Option<Vec<Vec<u8>>>)> {
        assert!(scan.component_indices.len() <= MAX_COMPONENTS);

        let components: Vec<Component> = scan.component_indices.iter()
                                                               .map(|&i| frame.components[i].clone())
                                                               .collect();

        // Verify that all required quantization tables has been set.
        if components.iter().any(|component| self.quantization_tables[component.quantization_table_index].is_none()) {
            return Err(Error::Format("use of unset quantization table".to_owned()));
        }

        if self.is_mjpeg {
            fill_default_mjpeg_tables(scan, &mut self.dc_huffman_tables, &mut self.ac_huffman_tables);
        }

        // Verify that all required huffman tables has been set.
        if scan.spectral_selection.start == 0 &&
                scan.dc_table_indices.iter().any(|&i| self.dc_huffman_tables[i].is_none()) {
            return Err(Error::Format("scan makes use of unset dc huffman table".to_owned()));
        }
        if scan.spectral_selection.end > 1 &&
                scan.ac_table_indices.iter().any(|&i| self.ac_huffman_tables[i].is_none()) {
            return Err(Error::Format("scan makes use of unset ac huffman table".to_owned()));
        }

        // Prepare the worker thread for the work to come.
        for (i, component) in components.iter().enumerate() {
            if finished[i] {
                let row_data = RowData {
                    index: i,
                    component: component.clone(),
                    quantization_table: self.quantization_tables[component.quantization_table_index].clone().unwrap(),
                };

                worker.start(row_data)?;
            }
        }

        let is_progressive = frame.coding_process == CodingProcess::DctProgressive;
        let is_interleaved = components.len() > 1;
        let mut dummy_block = [0i16; 64];
        let mut huffman = HuffmanDecoder::new();
        let mut dc_predictors = [0i16; MAX_COMPONENTS];
        let mut mcus_left_until_restart = self.restart_interval;
        let mut expected_rst_num = 0;
        let mut eob_run = 0;
        let mut mcu_row_coefficients = Vec::with_capacity(components.len());

        if !is_progressive {
            for (_, component) in components.iter().enumerate().filter(|&(i, _)| finished[i]) {
                let coefficients_per_mcu_row = component.block_size.width as usize * component.vertical_sampling_factor as usize * 64;
                mcu_row_coefficients.push(vec![0i16; coefficients_per_mcu_row]);
            }
        }

        // 4.8.2
        // When reading from the stream, if the data is non-interleaved then an MCU consists of
        // exactly one block (effectively a 1x1 sample).
        let (mcu_horizontal_samples, mcu_vertical_samples) = if is_interleaved {
            let horizontal = components.iter().map(|component| component.horizontal_sampling_factor as u16).collect::<Vec<_>>();
            let vertical = components.iter().map(|component| component.vertical_sampling_factor as u16).collect::<Vec<_>>();
            (horizontal, vertical)
        } else {
            (vec![1], vec![1])
        };

        // This also affects how many MCU values we read from stream. If it's a non-interleaved stream,
        // the MCUs will be exactly the block count.
        let (max_mcu_x, max_mcu_y) = if is_interleaved {
            (frame.mcu_size.width, frame.mcu_size.height)
        } else {
            (components[0].block_size.width, components[0].block_size.height)
        };

        for mcu_y in 0..max_mcu_y {
            if mcu_y * 8 >= frame.image_size.height {
                break;
            }

            for mcu_x in 0..max_mcu_x {
                if mcu_x * 8 >= frame.image_size.width {
                    break;
                }

                if self.restart_interval > 0 {
                    if mcus_left_until_restart == 0 {
                        match huffman.take_marker(&mut self.reader)? {
                            Some(Marker::RST(n)) => {
                                if n != expected_rst_num {
                                    return Err(Error::Format(format!("found RST{} where RST{} was expected", n, expected_rst_num)));
                                }

                                huffman.reset();
                                // Section F.2.1.3.1
                                dc_predictors = [0i16; MAX_COMPONENTS];
                                // Section G.1.2.2
                                eob_run = 0;

                                expected_rst_num = (expected_rst_num + 1) % 8;
                                mcus_left_until_restart = self.restart_interval;
                            },
                            Some(marker) => return Err(Error::Format(format!("found marker {:?} inside scan where RST{} was expected", marker, expected_rst_num))),
                            None => return Err(Error::Format(format!("no marker found where RST{} was expected", expected_rst_num))),
                        }
                    }

                    mcus_left_until_restart -= 1;
                }

                for (i, component) in components.iter().enumerate() {
                    for v_pos in 0..mcu_vertical_samples[i] {
                        for h_pos in 0..mcu_horizontal_samples[i] {
                            let coefficients = if is_progressive {
                                let block_y = (mcu_y * mcu_vertical_samples[i] + v_pos) as usize;
                                let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize;
                                let block_offset = (block_y * component.block_size.width as usize + block_x) * 64;
                                &mut self.coefficients[scan.component_indices[i]][block_offset..block_offset + 64]
                            } else if finished[i] {
                                // Because the worker thread operates in batches as if we were always interleaved, we
                                // need to distinguish between a single-shot buffer and one that's currently in process
                                // (for a non-interleaved) stream
                                let mcu_batch_current_row = if is_interleaved {
                                    0
                                } else {
                                    mcu_y % component.vertical_sampling_factor as u16
                                };

                                let block_y = (mcu_batch_current_row * mcu_vertical_samples[i] + v_pos) as usize;
                                let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize;
                                let block_offset = (block_y * component.block_size.width as usize + block_x) * 64;
                                &mut mcu_row_coefficients[i][block_offset..block_offset + 64]
                            } else {
                                &mut dummy_block[..]
                            };

                            if scan.successive_approximation_high == 0 {
                                decode_block(&mut self.reader,
                                            coefficients,
                                            &mut huffman,
                                            self.dc_huffman_tables[scan.dc_table_indices[i]].as_ref(),
                                            self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
                                            scan.spectral_selection.clone(),
                                            scan.successive_approximation_low,
                                            &mut eob_run,
                                            &mut dc_predictors[i])?;
                            }
                            else {
                                decode_block_successive_approximation(&mut self.reader,
                                                                    coefficients,
                                                                    &mut huffman,
                                                                    self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
                                                                    scan.spectral_selection.clone(),
                                                                    scan.successive_approximation_low,
                                                                    &mut eob_run)?;
                            }
                        }
                    }
                }
            }

            // Send the coefficients from this MCU row to the worker thread for dequantization and idct.
            for (i, component) in components.iter().enumerate() {
                if finished[i] {
                    // In the event of non-interleaved streams, if we're still building the buffer out,
                    // keep going; don't send it yet. We also need to ensure we don't skip over the last
                    // row(s) of the image.
                    if !is_interleaved && (mcu_y + 1) * 8 < frame.image_size.height {
                        if (mcu_y + 1) % component.vertical_sampling_factor as u16 > 0 {
                            continue;
                        }
                    }

                    let coefficients_per_mcu_row = component.block_size.width as usize * component.vertical_sampling_factor as usize * 64;

                    let row_coefficients = if is_progressive {
                        // Because non-interleaved streams will have multiple MCU rows concatenated together,
                        // the row for calculating the offset is different.
                        let worker_mcu_y = if is_interleaved {
                            mcu_y
                        } else {
                            // Explicitly doing floor-division here
                            mcu_y / component.vertical_sampling_factor as u16
                        };

                        let offset = worker_mcu_y as usize * coefficients_per_mcu_row;
                        self.coefficients[scan.component_indices[i]][offset .. offset + coefficients_per_mcu_row].to_vec()
                    } else {
                        mem::replace(&mut mcu_row_coefficients[i], vec![0i16; coefficients_per_mcu_row])
                    };

                    worker.append_row((i, row_coefficients))?;
                }
            }
        }

        let mut marker = huffman.take_marker(&mut self.reader)?;
        while let Some(Marker::RST(_)) = marker {
            marker = self.read_marker().ok();
        }

        if finished.iter().any(|&c| c) {
            // Retrieve all the data from the worker thread.
            let mut data = vec![Vec::new(); frame.components.len()];

            for (i, &component_index) in scan.component_indices.iter().enumerate() {
                if finished[i] {
                    data[component_index] = worker.get_result(i)?;
                }
            }

            Ok((marker, Some(data)))
        }
        else {
            Ok((marker, None))
        }
    }
}

fn decode_block<R: Read>(reader: &mut R,
                         coefficients: &mut [i16],
                         huffman: &mut HuffmanDecoder,
                         dc_table: Option<&HuffmanTable>,
                         ac_table: Option<&HuffmanTable>,
                         spectral_selection: Range<u8>,
                         successive_approximation_low: u8,
                         eob_run: &mut u16,
                         dc_predictor: &mut i16) -> Result<()> {
    debug_assert_eq!(coefficients.len(), 64);

    if spectral_selection.start == 0 {
        // Section F.2.2.1
        // Figure F.12
        let value = huffman.decode(reader, dc_table.unwrap())?;
        let diff = match value {
            0 => 0,
            1..=11 => huffman.receive_extend(reader, value)?,
            _ => {
                // Section F.1.2.1.1
                // Table F.1
                return Err(Error::Format("invalid DC difference magnitude category".to_owned()));
            },
        };

        // Malicious JPEG files can cause this add to overflow, therefore we use wrapping_add.
        // One example of such a file is tests/crashtest/images/dc-predictor-overflow.jpg
        *dc_predictor = dc_predictor.wrapping_add(diff);
        coefficients[0] = *dc_predictor << successive_approximation_low;
    }

    let mut index = cmp::max(spectral_selection.start, 1);

    if index < spectral_selection.end && *eob_run > 0 {
        *eob_run -= 1;
        return Ok(());
    }

    // Section F.1.2.2.1
    while index < spectral_selection.end {
        if let Some((value, run)) = huffman.decode_fast_ac(reader, ac_table.unwrap())? {
            index += run;

            if index >= spectral_selection.end {
                break;
            }

            coefficients[UNZIGZAG[index as usize] as usize] = value << successive_approximation_low;
            index += 1;
        }
        else {
            let byte = huffman.decode(reader, ac_table.unwrap())?;
            let r = byte >> 4;
            let s = byte & 0x0f;

            if s == 0 {
                match r {
                    15 => index += 16, // Run length of 16 zero coefficients.
                    _  => {
                        *eob_run = (1 << r) - 1;

                        if r > 0 {
                            *eob_run += huffman.get_bits(reader, r)?;
                        }

                        break;
                    },
                }
            }
            else {
                index += r;

                if index >= spectral_selection.end {
                    break;
                }

                coefficients[UNZIGZAG[index as usize] as usize] = huffman.receive_extend(reader, s)? << successive_approximation_low;
                index += 1;
            }
        }
    }

    Ok(())
}

fn decode_block_successive_approximation<R: Read>(reader: &mut R,
                                                  coefficients: &mut [i16],
                                                  huffman: &mut HuffmanDecoder,
                                                  ac_table: Option<&HuffmanTable>,
                                                  spectral_selection: Range<u8>,
                                                  successive_approximation_low: u8,
                                                  eob_run: &mut u16) -> Result<()> {
    debug_assert_eq!(coefficients.len(), 64);

    let bit = 1 << successive_approximation_low;

    if spectral_selection.start == 0 {
        // Section G.1.2.1

        if huffman.get_bits(reader, 1)? == 1 {
            coefficients[0] |= bit;
        }
    }
    else {
        // Section G.1.2.3

        if *eob_run > 0 {
            *eob_run -= 1;
            refine_non_zeroes(reader, coefficients, huffman, spectral_selection, 64, bit)?;
            return Ok(());
        }

        let mut index = spectral_selection.start;

        while index < spectral_selection.end {
            let byte = huffman.decode(reader, ac_table.unwrap())?;
            let r = byte >> 4;
            let s = byte & 0x0f;

            let mut zero_run_length = r;
            let mut value = 0;

            match s {
                0 => {
                    match r {
                        15 => {
                            // Run length of 16 zero coefficients.
                            // We don't need to do anything special here, zero_run_length is 15
                            // and then value (which is zero) gets written, resulting in 16
                            // zero coefficients.
                        },
                        _ => {
                            *eob_run = (1 << r) - 1;

                            if r > 0 {
                                *eob_run += huffman.get_bits(reader, r)?;
                            }

                            // Force end of block.
                            zero_run_length = 64;
                        },
                    }
                },
                1 => {
                    if huffman.get_bits(reader, 1)? == 1 {
                        value = bit;
                    }
                    else {
                        value = -bit;
                    }
                },
                _ => return Err(Error::Format("unexpected huffman code".to_owned())),
            }

            let range = Range {
                start: index,
                end: spectral_selection.end,
            };
            index = refine_non_zeroes(reader, coefficients, huffman, range, zero_run_length, bit)?;

            if value != 0 {
                coefficients[UNZIGZAG[index as usize] as usize] = value;
            }

            index += 1;
        }
    }

    Ok(())
}

fn refine_non_zeroes<R: Read>(reader: &mut R,
                              coefficients: &mut [i16],
                              huffman: &mut HuffmanDecoder,
                              range: Range<u8>,
                              zrl: u8,
                              bit: i16) -> Result<u8> {
    debug_assert_eq!(coefficients.len(), 64);

    let last = range.end - 1;
    let mut zero_run_length = zrl;

    for i in range {
        let index = UNZIGZAG[i as usize] as usize;

        if coefficients[index] == 0 {
            if zero_run_length == 0 {
                return Ok(i);
            }

            zero_run_length -= 1;
        }
        else if huffman.get_bits(reader, 1)? == 1 && coefficients[index] & bit == 0 {
            if coefficients[index] > 0 {
                coefficients[index] += bit;
            }
            else {
                coefficients[index] -= bit;
            }
        }
    }

    Ok(last)
}

fn compute_image(components: &[Component],
                 mut data: Vec<Vec<u8>>,
                 output_size: Dimensions,
                 is_jfif: bool,
                 color_transform: Option<AdobeColorTransform>) -> Result<Vec<u8>> {
    if data.is_empty() || data.iter().any(Vec::is_empty) {
        return Err(Error::Format("not all components have data".to_owned()));
    }

    if components.len() == 1 {
        let component = &components[0];
        let mut decoded: Vec<u8> = data.remove(0);

        let width = component.size.width as usize;
        let height = component.size.height as usize;
        let size = width * height;
        let line_stride = component.block_size.width as usize * component.dct_scale;

        // if the image width is a multiple of the block size,
        // then we don't have to move bytes in the decoded data
        if usize::from(output_size.width) != line_stride {
            let mut buffer = vec![0u8; width];
            // The first line already starts at index 0, so we need to move only lines 1..height
            for y in 1..height {
                let destination_idx = y * width;
                let source_idx = y * line_stride;
                // We could use copy_within, but we need to support old rust versions
                buffer.copy_from_slice(&decoded[source_idx..][..width]);
                let destination = &mut decoded[destination_idx..][..width];
                destination.copy_from_slice(&buffer);
            }
        }
        decoded.resize(size, 0);
        Ok(decoded)
    }
    else {
        compute_image_parallel(components, data, output_size, is_jfif, color_transform)
    }
}

#[cfg(feature="rayon")]
fn compute_image_parallel(components: &[Component],
                          data: Vec<Vec<u8>>,
                          output_size: Dimensions,
                          is_jfif: bool,
                          color_transform: Option<AdobeColorTransform>) -> Result<Vec<u8>> {
    use rayon::prelude::*;

    let color_convert_func = choose_color_convert_func(components.len(), is_jfif, color_transform)?;
    let upsampler = Upsampler::new(components, output_size.width, output_size.height)?;
    let line_size = output_size.width as usize * components.len();
    let mut image = vec![0u8; line_size * output_size.height as usize];

    image.par_chunks_mut(line_size)
         .with_max_len(1)
         .enumerate()
         .for_each(|(row, line)| {
             upsampler.upsample_and_interleave_row(&data, row, output_size.width as usize, line);
             color_convert_func(line);
         });

    Ok(image)
 }

#[cfg(not(feature="rayon"))]
fn compute_image_parallel(components: &[Component],
                          data: Vec<Vec<u8>>,
                          output_size: Dimensions,
                          is_jfif: bool,
                          color_transform: Option<AdobeColorTransform>) -> Result<Vec<u8>> {
    let color_convert_func = choose_color_convert_func(components.len(), is_jfif, color_transform)?;
    let upsampler = Upsampler::new(components, output_size.width, output_size.height)?;
    let line_size = output_size.width as usize * components.len();
    let mut image = vec![0u8; line_size * output_size.height as usize];

    for (row, line) in image.chunks_mut(line_size)
         .enumerate() {
             upsampler.upsample_and_interleave_row(&data, row, output_size.width as usize, line);
             color_convert_func(line);
         }

    Ok(image)
}

fn choose_color_convert_func(component_count: usize,
                             _is_jfif: bool,
                             color_transform: Option<AdobeColorTransform>)
                             -> Result<fn(&mut [u8])> {
    match component_count {
        3 => {
            // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
            // Unknown means the data is RGB, so we don't need to perform any color conversion on it.
            if color_transform == Some(AdobeColorTransform::Unknown) {
                Ok(color_convert_line_null)
            }
            else {
                Ok(color_convert_line_ycbcr)
            }
        },
        4 => {
            // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
            match color_transform {
                Some(AdobeColorTransform::Unknown) => Ok(color_convert_line_cmyk),
                Some(_) => Ok(color_convert_line_ycck),
                None => Err(Error::Format("4 components without Adobe APP14 metadata to indicate color space".to_owned())),
            }
        },
        _ => panic!(),
    }
}

fn color_convert_line_null(_data: &mut [u8]) {
}

fn color_convert_line_ycbcr(data: &mut [u8]) {
    for chunk in data.chunks_exact_mut(3) {
        let (r, g, b) = ycbcr_to_rgb(chunk[0], chunk[1], chunk[2]);
        chunk[0] = r;
        chunk[1] = g;
        chunk[2] = b;
    }
}

fn color_convert_line_ycck(data: &mut [u8]) {
    for chunk in data.chunks_exact_mut(4) {
        let (r, g, b) = ycbcr_to_rgb(chunk[0], chunk[1], chunk[2]);
        let k = chunk[3];
        chunk[0] = r;
        chunk[1] = g;
        chunk[2] = b;
        chunk[3] = 255 - k;

    }
}

fn color_convert_line_cmyk(data: &mut [u8]) {
    for chunk in data.chunks_exact_mut(4) {
        chunk[0] = 255 - chunk[0];
        chunk[1] = 255 - chunk[1];
        chunk[2] = 255 - chunk[2];
        chunk[3] = 255 - chunk[3];
    }
}

// ITU-R BT.601
fn ycbcr_to_rgb(y: u8, cb: u8, cr: u8) -> (u8, u8, u8) {
    let y = y as f32;
    let cb = cb as f32 - 128.0;
    let cr = cr as f32 - 128.0;

    let r = y                + 1.40200 * cr;
    let g = y - 0.34414 * cb - 0.71414 * cr;
    let b = y + 1.77200 * cb;

    // TODO: Rust has defined float-to-int conversion as saturating,
    // which is exactly what we need here. However, as of this writing
    // it still hasn't reached the stable channel.
    // This can be simplified to `(r + 0.5) as u8` without any clamping
    // as soon as our MSRV reaches the version that has saturating casts.
    // The version without explicit clamping is also noticeably faster.
    (clamp_to_u8((r + 0.5) as i32) as u8,
     clamp_to_u8((g + 0.5) as i32) as u8,
     clamp_to_u8((b + 0.5) as i32) as u8)
}

fn clamp_to_u8(value: i32) -> i32 {
    let value = std::cmp::max(value, 0);
    std::cmp::min(value, 255)
}