Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
#![no_std]
#![warn(missing_docs)]

//! This crate gives small utilities for casting between plain data types.
//!
//! ## Basics
//!
//! Data comes in five basic forms in Rust, so we have five basic casting
//! functions:
//!
//! * `T` uses [`cast`]
//! * `&T` uses [`cast_ref`]
//! * `&mut T` uses [`cast_mut`]
//! * `&[T]` uses [`cast_slice`]
//! * `&mut [T]` uses [`cast_slice_mut`]
//!
//! Some casts will never fail (eg: `cast::<u32, f32>` always works), other
//! casts might fail (eg: `cast_ref::<[u8; 4], u32>` will fail if the reference
//! isn't already aligned to 4). Each casting function has a "try" version which
//! will return a `Result`, and the "normal" version which will simply panic on
//! invalid input.
//!
//! ## Using Your Own Types
//!
//! All the functions here are guarded by the [`Pod`] trait, which is a
//! sub-trait of the [`Zeroable`] trait.
//!
//! If you're very sure that your type is eligible, you can implement those
//! traits for your type and then they'll have full casting support. However,
//! these traits are `unsafe`, and you should carefully read the requirements
//! before adding the them to your own types.
//!
//! ## Features
//!
//! * This crate is core only by default, but if you're using Rust 1.36 or later
//!   you can enable the `extern_crate_alloc` cargo feature for some additional
//!   methods related to `Box` and `Vec`. Note that the `docs.rs` documentation
//!   is always built with `extern_crate_alloc` cargo feature enabled.

#[cfg(target_arch = "x86")]
use core::arch::x86;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64;
//
use core::{marker::*, mem::*, num::*, ptr::*};

// Used from macros to ensure we aren't using some locally defined name and
// actually are referencing libcore. This also would allow pre-2018 edition
// crates to use our macros, but I'm not sure how important that is.
#[doc(hidden)]
pub use ::core as __core;

macro_rules! impl_unsafe_marker_for_array {
  ( $marker:ident , $( $n:expr ),* ) => {
    $(unsafe impl<T> $marker for [T; $n] where T: $marker {})*
  }
}

#[cfg(feature = "extern_crate_std")]
extern crate std;

#[cfg(feature = "extern_crate_alloc")]
extern crate alloc;
#[cfg(feature = "extern_crate_alloc")]
pub mod allocation;
#[cfg(feature = "extern_crate_alloc")]
pub use allocation::*;

mod zeroable;
pub use zeroable::*;

mod pod;
pub use pod::*;

mod contiguous;
pub use contiguous::*;

mod offset_of;
pub use offset_of::*;

mod transparent;
pub use transparent::*;

#[cfg(feature = "derive")]
pub use bytemuck_derive::{Zeroable, Pod, TransparentWrapper, Contiguous};

/*

Note(Lokathor): We've switched all of the `unwrap` to `match` because there is
apparently a bug: https://github.com/rust-lang/rust/issues/68667
and it doesn't seem to show up in simple godbolt examples but has been reported
as having an impact when there's a cast mixed in with other more complicated
code around it. Rustc/LLVM ends up missing that the `Err` can't ever happen for
particular type combinations, and then it doesn't fully eliminated the panic
possibility code branch.

*/

/// Immediately panics.
#[cold]
#[inline(never)]
fn something_went_wrong(src: &str, err: PodCastError) -> ! {
  // Note(Lokathor): Keeping the panic here makes the panic _formatting_ go
  // here too, which helps assembly readability and also helps keep down
  // the inline pressure.
  panic!("{src}>{err:?}", src = src, err = err)
}

/// Re-interprets `&T` as `&[u8]`.
///
/// Any ZST becomes an empty slice, and in that case the pointer value of that
/// empty slice might not match the pointer value of the input reference.
#[inline]
pub fn bytes_of<T: Pod>(t: &T) -> &[u8] {
  match try_cast_slice::<T, u8>(core::slice::from_ref(t)) {
    Ok(s) => s,
    Err(_) => unreachable!(),
  }
}

/// Re-interprets `&mut T` as `&mut [u8]`.
///
/// Any ZST becomes an empty slice, and in that case the pointer value of that
/// empty slice might not match the pointer value of the input reference.
#[inline]
pub fn bytes_of_mut<T: Pod>(t: &mut T) -> &mut [u8] {
  match try_cast_slice_mut::<T, u8>(core::slice::from_mut(t)) {
    Ok(s) => s,
    Err(_) => unreachable!(),
  }
}

/// Re-interprets `&[u8]` as `&T`.
///
/// ## Panics
///
/// This is [`try_from_bytes`] but will panic on error.
#[inline]
pub fn from_bytes<T: Pod>(s: &[u8]) -> &T {
  match try_from_bytes(s) {
    Ok(t) => t,
    Err(e) => something_went_wrong("from_bytes", e),
  }
}

/// Re-interprets `&mut [u8]` as `&mut T`.
///
/// ## Panics
///
/// This is [`try_from_bytes_mut`] but will panic on error.
#[inline]
pub fn from_bytes_mut<T: Pod>(s: &mut [u8]) -> &mut T {
  match try_from_bytes_mut(s) {
    Ok(t) => t,
    Err(e) => something_went_wrong("from_bytes_mut", e),
  }
}

/// Re-interprets `&[u8]` as `&T`.
///
/// ## Failure
///
/// * If the slice isn't aligned for the new type
/// * If the slice's length isn’t exactly the size of the new type
#[inline]
pub fn try_from_bytes<T: Pod>(s: &[u8]) -> Result<&T, PodCastError> {
  if s.len() != size_of::<T>() {
    Err(PodCastError::SizeMismatch)
  } else if (s.as_ptr() as usize) % align_of::<T>() != 0 {
    Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned)
  } else {
    Ok(unsafe { &*(s.as_ptr() as *const T) })
  }
}

/// Re-interprets `&mut [u8]` as `&mut T`.
///
/// ## Failure
///
/// * If the slice isn't aligned for the new type
/// * If the slice's length isn’t exactly the size of the new type
#[inline]
pub fn try_from_bytes_mut<T: Pod>(
  s: &mut [u8],
) -> Result<&mut T, PodCastError> {
  if s.len() != size_of::<T>() {
    Err(PodCastError::SizeMismatch)
  } else if (s.as_ptr() as usize) % align_of::<T>() != 0 {
    Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned)
  } else {
    Ok(unsafe { &mut *(s.as_mut_ptr() as *mut T) })
  }
}

/// The things that can go wrong when casting between [`Pod`] data forms.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum PodCastError {
  /// You tried to cast a slice to an element type with a higher alignment
  /// requirement but the slice wasn't aligned.
  TargetAlignmentGreaterAndInputNotAligned,
  /// If the element size changes then the output slice changes length
  /// accordingly. If the output slice wouldn't be a whole number of elements
  /// then the conversion fails.
  OutputSliceWouldHaveSlop,
  /// When casting a slice you can't convert between ZST elements and non-ZST
  /// elements. When casting an individual `T`, `&T`, or `&mut T` value the
  /// source size and destination size must be an exact match.
  SizeMismatch,
  /// For this type of cast the alignments must be exactly the same and they
  /// were not so now you're sad.
  ///
  /// This error is generated **only** by operations that cast allocated types
  /// (such as `Box` and `Vec`), because in that case the alignment must stay
  /// exact.
  AlignmentMismatch,
}
impl core::fmt::Display for PodCastError {
  fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
    write!(f, "{:?}", self)
  }
}
#[cfg(feature = "extern_crate_std")]
impl std::error::Error for PodCastError {}

/// Cast `T` into `U`
///
/// ## Panics
///
/// * This is like [`try_cast`](try_cast), but will panic on a size mismatch.
#[inline]
pub fn cast<A: Pod, B: Pod>(a: A) -> B {
  if size_of::<A>() == size_of::<B>() {
    unsafe { core::mem::transmute_copy(&a) }
  } else {
    something_went_wrong("cast", PodCastError::SizeMismatch)
  }
}

/// Cast `&mut T` into `&mut U`.
///
/// ## Panics
///
/// This is [`try_cast_mut`] but will panic on error.
#[inline]
pub fn cast_mut<A: Pod, B: Pod>(a: &mut A) -> &mut B {
  if size_of::<A>() == size_of::<B>() && align_of::<A>() >= align_of::<B>() {
    // Plz mr compiler, just notice that we can't ever hit Err in this case.
    match try_cast_mut(a) {
      Ok(b) => b,
      Err(_) => unreachable!(),
    }
  } else {
    match try_cast_mut(a) {
      Ok(b) => b,
      Err(e) => something_went_wrong("cast_mut", e),
    }
  }
}

/// Cast `&T` into `&U`.
///
/// ## Panics
///
/// This is [`try_cast_ref`] but will panic on error.
#[inline]
pub fn cast_ref<A: Pod, B: Pod>(a: &A) -> &B {
  if size_of::<A>() == size_of::<B>() && align_of::<A>() >= align_of::<B>() {
    // Plz mr compiler, just notice that we can't ever hit Err in this case.
    match try_cast_ref(a) {
      Ok(b) => b,
      Err(_) => unreachable!(),
    }
  } else {
    match try_cast_ref(a) {
      Ok(b) => b,
      Err(e) => something_went_wrong("cast_ref", e),
    }
  }
}

/// Cast `&[A]` into `&[B]`.
///
/// ## Panics
///
/// This is [`try_cast_slice`] but will panic on error.
#[inline]
pub fn cast_slice<A: Pod, B: Pod>(a: &[A]) -> &[B] {
  match try_cast_slice(a) {
    Ok(b) => b,
    Err(e) => something_went_wrong("cast_slice", e),
  }
}

/// Cast `&mut [T]` into `&mut [U]`.
///
/// ## Panics
///
/// This is [`try_cast_slice_mut`] but will panic on error.
#[inline]
pub fn cast_slice_mut<A: Pod, B: Pod>(a: &mut [A]) -> &mut [B] {
  match try_cast_slice_mut(a) {
    Ok(b) => b,
    Err(e) => something_went_wrong("cast_slice_mut", e),
  }
}

/// As `align_to`, but safe because of the [`Pod`] bound.
#[inline]
pub fn pod_align_to<T: Pod, U: Pod>(vals: &[T]) -> (&[T], &[U], &[T]) {
  unsafe { vals.align_to::<U>() }
}

/// As `align_to_mut`, but safe because of the [`Pod`] bound.
#[inline]
pub fn pod_align_to_mut<T: Pod, U: Pod>(
  vals: &mut [T],
) -> (&mut [T], &mut [U], &mut [T]) {
  unsafe { vals.align_to_mut::<U>() }
}

/// Try to cast `T` into `U`.
///
/// Note that for this particular type of cast, alignment isn't a factor. The
/// input value is semantically copied into the function and then returned to a
/// new memory location which will have whatever the required alignment of the
/// output type is.
///
/// ## Failure
///
/// * If the types don't have the same size this fails.
#[inline]
pub fn try_cast<A: Pod, B: Pod>(a: A) -> Result<B, PodCastError> {
  if size_of::<A>() == size_of::<B>() {
    Ok(unsafe { core::mem::transmute_copy(&a) })
  } else {
    Err(PodCastError::SizeMismatch)
  }
}

/// Try to convert a `&T` into `&U`.
///
/// ## Failure
///
/// * If the reference isn't aligned in the new type
/// * If the source type and target type aren't the same size.
#[inline]
pub fn try_cast_ref<A: Pod, B: Pod>(a: &A) -> Result<&B, PodCastError> {
  // Note(Lokathor): everything with `align_of` and `size_of` will optimize away
  // after monomorphization.
  if align_of::<B>() > align_of::<A>()
    && (a as *const A as usize) % align_of::<B>() != 0
  {
    Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned)
  } else if size_of::<B>() == size_of::<A>() {
    Ok(unsafe { &*(a as *const A as *const B) })
  } else {
    Err(PodCastError::SizeMismatch)
  }
}

/// Try to convert a `&mut T` into `&mut U`.
///
/// As [`try_cast_ref`], but `mut`.
#[inline]
pub fn try_cast_mut<A: Pod, B: Pod>(a: &mut A) -> Result<&mut B, PodCastError> {
  // Note(Lokathor): everything with `align_of` and `size_of` will optimize away
  // after monomorphization.
  if align_of::<B>() > align_of::<A>()
    && (a as *mut A as usize) % align_of::<B>() != 0
  {
    Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned)
  } else if size_of::<B>() == size_of::<A>() {
    Ok(unsafe { &mut *(a as *mut A as *mut B) })
  } else {
    Err(PodCastError::SizeMismatch)
  }
}

/// Try to convert `&[A]` into `&[B]` (possibly with a change in length).
///
/// * `input.as_ptr() as usize == output.as_ptr() as usize`
/// * `input.len() * size_of::<A>() == output.len() * size_of::<B>()`
///
/// ## Failure
///
/// * If the target type has a greater alignment requirement and the input slice
///   isn't aligned.
/// * If the target element type is a different size from the current element
///   type, and the output slice wouldn't be a whole number of elements when
///   accounting for the size change (eg: 3 `u16` values is 1.5 `u32` values, so
///   that's a failure).
/// * Similarly, you can't convert between a [ZST](https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts)
///   and a non-ZST.
#[inline]
pub fn try_cast_slice<A: Pod, B: Pod>(a: &[A]) -> Result<&[B], PodCastError> {
  // Note(Lokathor): everything with `align_of` and `size_of` will optimize away
  // after monomorphization.
  if align_of::<B>() > align_of::<A>()
    && (a.as_ptr() as usize) % align_of::<B>() != 0
  {
    Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned)
  } else if size_of::<B>() == size_of::<A>() {
    Ok(unsafe { core::slice::from_raw_parts(a.as_ptr() as *const B, a.len()) })
  } else if size_of::<A>() == 0 || size_of::<B>() == 0 {
    Err(PodCastError::SizeMismatch)
  } else if core::mem::size_of_val(a) % size_of::<B>() == 0 {
    let new_len = core::mem::size_of_val(a) / size_of::<B>();
    Ok(unsafe { core::slice::from_raw_parts(a.as_ptr() as *const B, new_len) })
  } else {
    Err(PodCastError::OutputSliceWouldHaveSlop)
  }
}

/// Try to convert `&mut [A]` into `&mut [B]` (possibly with a change in
/// length).
///
/// As [`try_cast_slice`], but `&mut`.
#[inline]
pub fn try_cast_slice_mut<A: Pod, B: Pod>(
  a: &mut [A],
) -> Result<&mut [B], PodCastError> {
  // Note(Lokathor): everything with `align_of` and `size_of` will optimize away
  // after monomorphization.
  if align_of::<B>() > align_of::<A>()
    && (a.as_mut_ptr() as usize) % align_of::<B>() != 0
  {
    Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned)
  } else if size_of::<B>() == size_of::<A>() {
    Ok(unsafe {
      core::slice::from_raw_parts_mut(a.as_mut_ptr() as *mut B, a.len())
    })
  } else if size_of::<A>() == 0 || size_of::<B>() == 0 {
    Err(PodCastError::SizeMismatch)
  } else if core::mem::size_of_val(a) % size_of::<B>() == 0 {
    let new_len = core::mem::size_of_val(a) / size_of::<B>();
    Ok(unsafe {
      core::slice::from_raw_parts_mut(a.as_mut_ptr() as *mut B, new_len)
    })
  } else {
    Err(PodCastError::OutputSliceWouldHaveSlop)
  }
}