1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
//! Matrix of an arbitrary type and utilities to rotate, transpose, etc.

use itertools::iproduct;
use num_traits::Signed;
use std::error::Error;
use std::fmt;
use std::ops::{Deref, DerefMut, Index, IndexMut, Neg, Range};
use std::slice::{Iter, IterMut};

/// Matrix of an arbitrary type. Data are stored consecutively in
/// memory, by rows. Raw data can be accessed using `as_ref()`
/// or `as_mut()`.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
pub struct Matrix<C> {
    /// Rows
    pub rows: usize,
    /// Columns
    pub columns: usize,
    data: Vec<C>,
}

impl<C: Clone> Matrix<C> {
    /// Create new matrix with an initial value.
    pub fn new(rows: usize, columns: usize, value: C) -> Self {
        let mut v = Vec::with_capacity(rows * columns);
        v.resize(rows * columns, value);
        Self {
            rows,
            columns,
            data: v,
        }
    }

    /// Create new square matrix with initial value.
    pub fn new_square(size: usize, value: C) -> Self {
        Self::new(size, size, value)
    }

    /// Fill with a known value.
    pub fn fill(&mut self, value: C) {
        self.data.clear();
        self.data.resize(self.rows * self.columns, value);
    }

    /// Return a copy of a sub-matrix, or return an error if the
    /// ranges are outside the original matrix.
    #[allow(clippy::needless_pass_by_value)]
    pub fn slice(
        &self,
        rows: Range<usize>,
        columns: Range<usize>,
    ) -> Result<Self, MatrixFormatError> {
        if rows.end > self.rows || columns.end > self.columns {
            return Err(MatrixFormatError {
                message: "slice far end points outside the matrix".to_owned(),
            });
        }
        let height = rows.end - rows.start;
        let width = columns.end - columns.start;
        let mut v = Vec::with_capacity(height * width);
        for r in rows {
            v.extend(
                self.data[r * self.columns + columns.start..r * self.columns + columns.end]
                    .iter()
                    .cloned(),
            );
        }
        Self::from_vec(height, width, v)
    }

    /// Return a copy of a matrix rotated clock-wise
    /// a number of times.
    #[must_use]
    pub fn rotated_cw(&self, times: usize) -> Self {
        if self.is_square() {
            let mut copy = self.clone();
            copy.rotate_cw(times);
            copy
        } else {
            match times % 4 {
                0 => self.clone(),
                1 => {
                    let mut copy = self.transposed();
                    copy.flip_lr();
                    copy
                }
                2 => {
                    let mut copy = self.clone();
                    copy.data.reverse();
                    copy
                }
                _ => {
                    let mut copy = self.transposed();
                    copy.flip_ud();
                    copy
                }
            }
        }
    }

    /// Return a copy of a matrix rotated counter-clock-wise
    /// a number of times.
    #[must_use]
    pub fn rotated_ccw(&self, times: usize) -> Self {
        self.rotated_cw(4 - (times % 4))
    }

    /// Return a copy of the matrix flipped along the vertical axis.
    #[must_use]
    pub fn flipped_lr(&self) -> Self {
        let mut copy = self.clone();
        copy.flip_lr();
        copy
    }

    /// Return a copy of the matrix flipped along the horizontal axis.
    #[must_use]
    pub fn flipped_ud(&self) -> Self {
        let mut copy = self.clone();
        copy.flip_ud();
        copy
    }

    /// Return a copy of the matrix after transposition.
    #[must_use]
    pub fn transposed(&self) -> Self {
        Self {
            rows: self.columns,
            columns: self.rows,
            data: iproduct!(0..self.columns, 0..self.rows)
                .map(|(c, r)| self.data[r * self.columns + c].clone())
                .collect(),
        }
    }

    /// Extend the matrix in place by adding one full row. An error
    /// is returned if the row does not have the expected number of
    /// elements.
    pub fn extend(&mut self, row: &[C]) -> Result<(), MatrixFormatError> {
        if self.columns != row.len() {
            return Err(MatrixFormatError {
                message: format!(
                    "new row has {} columns intead of expected {}",
                    row.len(),
                    self.columns
                ),
            });
        }
        self.rows += 1;
        for e in row {
            self.data.push(e.clone());
        }
        Ok(())
    }
}

impl<C: Copy> Matrix<C> {
    /// Replace a slice of the current matrix with the content of another one.
    /// Only the relevant cells will be extracted if the slice goes outside the
    /// original matrix.
    pub fn set_slice(&mut self, pos: &(usize, usize), slice: &Self) {
        let &(ref row, ref column) = pos;
        let height = (self.rows - row).min(slice.rows);
        let width = (self.columns - column).min(slice.columns);
        for r in 0..height {
            self.data[(row + r) * self.columns + column..(row + r) * self.columns + column + width]
                .copy_from_slice(&slice.data[r * slice.columns..r * slice.columns + width]);
        }
    }
}

impl<C: Clone + Signed> Neg for Matrix<C> {
    type Output = Self;

    #[must_use]
    fn neg(self) -> Self {
        Self {
            rows: self.rows,
            columns: self.columns,
            data: self.data.iter().map(|x| -x.clone()).collect::<Vec<_>>(),
        }
    }
}

impl<C> Matrix<C> {
    /// Create new matrix from vector values. The first value
    /// will be assigned to index (0, 0), the second one to index (0, 1),
    /// and so on. An error is returned instead if data length does not
    /// correspond to the announced size.
    pub fn from_vec(
        rows: usize,
        columns: usize,
        values: Vec<C>,
    ) -> Result<Self, MatrixFormatError> {
        if rows * columns != values.len() {
            return Err(MatrixFormatError { message: format!("length of vector does not correspond to announced dimensions ({} instead of {}×{}={})", values.len(), rows, columns, rows*columns)});
        }
        Ok(Self {
            rows,
            columns,
            data: values,
        })
    }

    /// Create new square matrix from vector values. The first value
    /// will be assigned to index (0, 0), the second one to index (0, 1),
    /// and so on. An error is returned if the number of values is not a
    /// square number.
    pub fn square_from_vec(values: Vec<C>) -> Result<Self, MatrixFormatError> {
        let size = (values.len() as f32).sqrt().round() as usize;
        if size * size != values.len() {
            return Err(MatrixFormatError {
                message: format!("length of vector ({}) is not a square number", values.len()),
            });
        }
        Self::from_vec(size, size, values)
    }

    /// Create new empty matrix with a predefined number of columns.
    /// This is useful to gradually build the matrix and extend it
    /// later using [`extend`][Matrix::extend] and does not require
    /// a filler element compared to [`Matrix::new`].
    #[must_use]
    pub fn new_empty(columns: usize) -> Self {
        Self {
            rows: 0,
            columns,
            data: vec![],
        }
    }

    /// Create a matrix from something convertible to an iterator on rows,
    /// each row being convertible to an iterator on columns.
    ///
    /// An error will be returned if length of rows differ.
    ///
    /// ```
    /// use pathfinding::matrix::*;
    ///
    /// # fn main() -> Result<(), MatrixFormatError> {
    /// let input = "abc\ndef";
    /// let matrix = Matrix::from_rows(input.lines().map(|l| l.chars()))?;
    /// assert_eq!(matrix.rows, 2);
    /// assert_eq!(matrix.columns, 3);
    /// assert_eq!(matrix[&(1, 1)], 'e');
    /// # Ok(())
    /// # }
    /// ```
    pub fn from_rows<IR, IC>(rows: IR) -> Result<Self, MatrixFormatError>
    where
        IR: IntoIterator<Item = IC>,
        IC: IntoIterator<Item = C>,
    {
        let mut rows = rows.into_iter();
        if let Some(first_row) = rows.next() {
            let mut data = first_row.into_iter().collect::<Vec<_>>();
            let ncols = data.len();
            let mut nrows = 1;
            for (i, row) in rows.enumerate() {
                nrows += 1;
                data.extend(row);
                if nrows * ncols != data.len() {
                    return Err(MatrixFormatError {
                        message: format!(
                            "data for row {} (starting at 0) has len {} instead of expected {}",
                            i + 1,
                            data.len() - (nrows - 1) * ncols,
                            ncols
                        ),
                    });
                }
            }
            Self::from_vec(nrows, ncols, data)
        } else {
            Ok(Self::new_empty(0))
        }
    }

    /// Check if a matrix is a square one.
    #[must_use]
    pub fn is_square(&self) -> bool {
        self.rows == self.columns
    }

    /// Index in raw data of a given position.
    ///
    /// # Panics
    ///
    /// This function panics if the coordinates do not designated a cell.
    #[must_use]
    pub fn idx(&self, i: &(usize, usize)) -> usize {
        assert!(
            i.0 < self.rows,
            "trying to access row {} (max {})",
            i.0,
            self.rows - 1
        );
        assert!(
            i.1 < self.columns,
            "trying to access column {} (max {})",
            i.1,
            self.columns - 1
        );
        i.0 * self.columns + i.1
    }

    /// Flip the matrix around the vertical axis.
    pub fn flip_lr(&mut self) {
        for r in 0..self.rows {
            self.data[r * self.columns..(r + 1) * self.columns].reverse();
        }
    }

    /// Flip the matrix around the horizontal axis.
    pub fn flip_ud(&mut self) {
        for r in 0..self.rows / 2 {
            for c in 0..self.columns {
                self.data
                    .swap(r * self.columns + c, (self.rows - 1 - r) * self.columns + c);
            }
        }
    }

    /// Rotate a square matrix clock-wise a number of times.
    ///
    /// # Panics
    ///
    /// This function panics if the matrix is not square.
    pub fn rotate_cw(&mut self, times: usize) {
        assert!(
            self.rows == self.columns,
            "attempt to rotate a non-square matrix"
        );
        match times % 4 {
            0 => (),
            2 => self.data.reverse(),
            n => {
                for r in 0..self.rows / 2 {
                    for c in 0..(self.columns + 1) / 2 {
                        // i1 … i2
                        // …  …  …
                        // i4 … i3
                        let i1 = r * self.columns + c;
                        let i2 = c * self.columns + self.columns - 1 - r;
                        let i3 = (self.rows - 1 - r) * self.columns + self.columns - 1 - c;
                        let i4 = (self.rows - 1 - c) * self.columns + r;
                        if n == 1 {
                            // i1 … i2      i4 … i1
                            // …  …  …  =>  …  …  …
                            // i4 … i3      i3 … i2
                            self.data.swap(i1, i2);
                            self.data.swap(i1, i4);
                            self.data.swap(i3, i4);
                        } else {
                            // i1 … i2      i2 … i3
                            // …  …  …  =>  …  …  …
                            // i4 … i3      i1 … i4
                            self.data.swap(i3, i4);
                            self.data.swap(i1, i4);
                            self.data.swap(i1, i2);
                        }
                    }
                }
            }
        }
    }

    /// Rotate a square matrix counter-clock-wise a number of times.
    ///
    /// # Panics
    ///
    /// This function panics if the matrix is not square.
    pub fn rotate_ccw(&mut self, times: usize) {
        self.rotate_cw(4 - (times % 4))
    }

    /// Return an iterator on neighbours of a given matrix cell, with or
    /// without considering diagonals.
    pub fn neighbours(
        &self,
        index: &(usize, usize),
        diagonals: bool,
    ) -> impl Iterator<Item = (usize, usize)> {
        let &(r, c) = index;
        let min_dr = if r == 0 { 0 } else { -1 };
        let max_dr = if r == self.rows - 1 { 0 } else { 1 };
        let min_dc = if c == 0 { 0 } else { -1 };
        let max_dc = if c == self.columns - 1 { 0 } else { 1 };
        (min_dc..=max_dc)
            .flat_map(move |dc| (min_dr..=max_dr).map(move |dr| (dr, dc)))
            .filter_map(move |(dr, dc)| {
                if (diagonals && dr != 0 && dc != 0) || dr.abs() + dc.abs() == 1 {
                    Some(((r as isize + dr) as usize, (c as isize + dc) as usize))
                } else {
                    None
                }
            })
    }

    /// Return an iterator of cells in a given direction starting from
    /// a given cell. Any direction (including with values greater than 1) can be
    /// given. The starting cell is not included in the results.
    ///
    /// # Examples
    ///
    /// Starting from square `(1, 1)` in a 8×8 chessboard, move like a knight
    /// by steps of two rows down and one column right:
    ///
    /// ```
    /// let m = Matrix::new_square(8, '.');
    /// assert_eq!(m.in_direction(&(1, 1), (2, 1)).collect(),
    ///            vec![(3, 2), (5, 3), (7, 4)]);
    /// ```
    ///
    /// Starting from square `(3, 2)` in the same chessboard, move diagonally in
    /// the North-West direction:
    ///
    /// ```
    /// let m = Matrix::new_square(8, '.');
    /// assert_eq!(m.in_direction(&(3, 2), directions::NW).collect(),
    ///            vec![(2, 1), (1, 0)]);
    /// ```
    pub fn in_direction(
        &self,
        index: &(usize, usize),
        direction: (isize, isize),
    ) -> impl Iterator<Item = (usize, usize)> {
        let iterations: usize = if (direction.0 == 0 && direction.1 == 0)
            || index.0 >= self.rows
            || index.1 >= self.columns
        {
            0
        } else {
            let max_r = match direction.0.signum() {
                -1 => (index.0 / direction.0.abs() as usize),
                1 => ((self.rows - index.0 - 1) / direction.0 as usize),
                0 => std::usize::MAX,
                _ => unreachable!(),
            };
            let max_c = match direction.1.signum() {
                -1 => (index.1 / direction.1.abs() as usize),
                1 => ((self.columns - index.1 - 1) / direction.1 as usize),
                0 => std::usize::MAX,
                _ => unreachable!(),
            };
            max_c.min(max_r)
        };
        let index = *index;
        (1..=iterations).map(move |i| {
            (
                (index.0 as isize + i as isize * direction.0) as usize,
                (index.1 as isize + i as isize * direction.1) as usize,
            )
        })
    }

    /// Return an iterator on rows of the matrix.
    #[must_use]
    pub fn iter(&self) -> RowIterator<C> {
        (&self).into_iter()
    }

    /// Return an iterator on the Matrix indices, first row first.
    pub fn indices(&self) -> impl Iterator<Item = (usize, usize)> {
        let columns = self.columns;
        (0..self.rows).flat_map(move |r| (0..columns).map(move |c| (r, c)))
    }

    /// Return an iterator on values, first row first.
    #[must_use]
    pub fn values(&self) -> Iter<C> {
        self.data.iter()
    }

    /// Return a mutable iterator on values, first row first.
    #[must_use]
    pub fn values_mut(&mut self) -> IterMut<C> {
        self.data.iter_mut()
    }
}

impl<'a, C> Index<&'a (usize, usize)> for Matrix<C> {
    type Output = C;

    #[must_use]
    fn index(&self, index: &'a (usize, usize)) -> &C {
        &self.data[self.idx(index)]
    }
}

impl<'a, C> IndexMut<&'a (usize, usize)> for Matrix<C> {
    fn index_mut(&mut self, index: &'a (usize, usize)) -> &mut C {
        let i = self.idx(index);
        &mut self.data[i]
    }
}

impl<C> Deref for Matrix<C> {
    type Target = [C];

    #[must_use]
    fn deref(&self) -> &[C] {
        &self.data
    }
}

impl<C> DerefMut for Matrix<C> {
    fn deref_mut(&mut self) -> &mut [C] {
        &mut self.data
    }
}

/// The matrix! macro allows the declaration of a Matrix from static data.
/// All rows must have the same number of columns. The data will be copied
/// into the matrix.
///
/// # Panics
///
/// This macro panics if the rows have an inconsistent number of columns.
///
/// # Example
///
/// ```
/// use pathfinding::matrix;
///
/// let m = matrix![[10, 20, 30], [40, 50, 60]];
///
/// assert_eq!(m.columns, 3);
/// assert_eq!(m.rows, 2);
/// ```
#[macro_export]
macro_rules! matrix {
    ($a:expr) => {{
        let mut m = pathfinding::matrix::Matrix::new_empty($a.len());
        m.extend(&$a).unwrap();
        m
    }};
    ($a:expr, $($b: expr),+) => {{
        let mut m = matrix!($a);
        let mut r = 0;
        $(
            m.extend(&$b).unwrap();
        )+
        m
    }};
    ($a:expr, $($b: expr),+, ) => (matrix!($a, $($b),+))
}

/// Format error encountered while attempting to build a Matrix.
#[derive(Debug)]
pub struct MatrixFormatError {
    message: String,
}

impl Error for MatrixFormatError {}

impl fmt::Display for MatrixFormatError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "matrix format error: {}", self.message)
    }
}

/// Row iterator returned by `iter()` on a matrix.
pub struct RowIterator<'a, C> {
    matrix: &'a Matrix<C>,
    row: usize,
}

impl<'a, C> Iterator for RowIterator<'a, C> {
    type Item = &'a [C];

    fn next(&mut self) -> Option<Self::Item> {
        if self.row < self.matrix.rows {
            let r = Some(
                &self.matrix.data
                    [self.row * self.matrix.columns..(self.row + 1) * self.matrix.columns],
            );
            self.row += 1;
            r
        } else {
            None
        }
    }
}

impl<'a, C> IntoIterator for &'a Matrix<C> {
    type IntoIter = RowIterator<'a, C>;
    type Item = &'a [C];

    #[must_use]
    fn into_iter(self) -> RowIterator<'a, C> {
        RowIterator {
            matrix: self,
            row: 0,
        }
    }
}

/// Directions usable for [`Matrix::in_direction()`] second argument.
pub mod directions {
    /// East
    pub const E: (isize, isize) = (0, 1);

    /// South
    pub const S: (isize, isize) = (1, 0);

    /// West
    pub const W: (isize, isize) = (0, -1);

    /// North
    pub const N: (isize, isize) = (-1, 0);

    /// North-East
    pub const NE: (isize, isize) = (-1, 1);

    /// South-East
    pub const SE: (isize, isize) = (1, 1);

    /// North-West
    pub const NW: (isize, isize) = (-1, -1);

    /// South-West
    pub const SW: (isize, isize) = (1, -1);

    /// Four main directions
    pub const DIRECTIONS_4: [(isize, isize); 4] = [E, S, W, N];

    /// Eight main directions with diagonals
    pub const DIRECTIONS_8: [(isize, isize); 8] = [NE, E, SE, S, SW, W, NW, N];
}