1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
use crate::bitstream::LsbWriter;
use crate::deflate_state::LengthBuffers;
use crate::huffman_table::{
    create_codes_in_place, num_extra_bits_for_distance_code, num_extra_bits_for_length_code,
    HuffmanTable, FIXED_CODE_LENGTHS, LENGTH_BITS_START, MAX_CODE_LENGTH, NUM_DISTANCE_CODES,
    NUM_LITERALS_AND_LENGTHS,
};
use crate::length_encode::{
    encode_lengths_m, huffman_lengths_from_frequency_m, EncodedLength, COPY_PREVIOUS,
    REPEAT_ZERO_3_BITS, REPEAT_ZERO_7_BITS,
};
use crate::output_writer::FrequencyType;
use crate::stored_block::MAX_STORED_BLOCK_LENGTH;

use std::cmp;

/// The minimum number of literal/length values
pub const MIN_NUM_LITERALS_AND_LENGTHS: usize = 257;
/// The minimum number of distances
pub const MIN_NUM_DISTANCES: usize = 1;

const NUM_HUFFMAN_LENGTHS: usize = 19;

/// The output ordering of the lengths for the Huffman codes used to encode the lengths
/// used to build the full Huffman tree for length/literal codes.
/// http://www.gzip.org/zlib/rfc-deflate.html#dyn
const HUFFMAN_LENGTH_ORDER: [u8; NUM_HUFFMAN_LENGTHS] = [
    16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15,
];

// Number of bits used for the values specifying the number of codes
const HLIT_BITS: u8 = 5;
const HDIST_BITS: u8 = 5;
const HCLEN_BITS: u8 = 4;

/// The longest a Huffman code describing another Huffman length can be
const MAX_HUFFMAN_CODE_LENGTH: usize = 7;

// How many bytes (not including padding and the 3-bit block type) the stored block header takes up.
const STORED_BLOCK_HEADER_LENGTH: u64 = 4;
const BLOCK_MARKER_LENGTH: u8 = 3;

/// Creates a new slice from the input slice that stops at the final non-zero value
pub fn remove_trailing_zeroes<T: From<u8> + PartialEq>(input: &[T], min_length: usize) -> &[T] {
    let num_zeroes = input.iter().rev().take_while(|&a| *a == T::from(0)).count();
    &input[0..cmp::max(input.len() - num_zeroes, min_length)]
}

/// How many extra bits the Huffman length code uses to represent a value.
fn extra_bits_for_huffman_length_code(code: u8) -> u8 {
    match code {
        16..=17 => 3,
        18 => 7,
        _ => 0,
    }
}

/// Calculate how many bits the Huffman-encoded Huffman lengths will use.
fn calculate_huffman_length(frequencies: &[FrequencyType], code_lengths: &[u8]) -> u64 {
    frequencies
        .iter()
        .zip(code_lengths)
        .enumerate()
        .fold(0, |acc, (n, (&f, &l))| {
            acc + (u64::from(f)
                * (u64::from(l) + u64::from(extra_bits_for_huffman_length_code(n as u8))))
        })
}

/// Calculate how many bits data with the given frequencies will use when compressed with dynamic
/// code lengths (first return value) and static code lengths (second return value).
///
/// Parameters:
/// Frequencies, length of dynamic codes, and a function to get how many extra bits in addition
/// to the length of the Huffman code the symbol will use.
fn calculate_block_length<F>(
    frequencies: &[FrequencyType],
    dyn_code_lengths: &[u8],
    get_num_extra_bits: &F,
) -> (u64, u64)
where
    F: Fn(usize) -> u64,
{
    // Length of data represented by dynamic codes.
    let mut d_ll_length = 0u64;
    // length of data represented by static codes.
    let mut s_ll_length = 0u64;

    let iter = frequencies
        .iter()
        .zip(dyn_code_lengths.iter().zip(FIXED_CODE_LENGTHS.iter()))
        .enumerate();

    // This could maybe be optimised a bit by splitting the iteration of codes using extra bits and
    // codes not using extra bits, but the extra complexity may not be worth it.
    for (c, (&f, (&l, &fl))) in iter {
        // Frequency
        let f = u64::from(f);
        // How many extra bits the current code number needs.
        let extra_bits_for_code = get_num_extra_bits(c);

        d_ll_length += f * (u64::from(l) + extra_bits_for_code);
        s_ll_length += f * (u64::from(fl) + extra_bits_for_code);
    }

    (d_ll_length, s_ll_length)
}

/// Get how extra padding bits after a block start header a stored block would use.
///
/// # Panics
/// Panics if `pending_bits > 8`
fn stored_padding(pending_bits: u8) -> u64 {
    assert!(pending_bits <= 8);
    let free_space = 8 - pending_bits;
    if free_space >= BLOCK_MARKER_LENGTH {
        // There is space in the current byte for the header.
        free_space - BLOCK_MARKER_LENGTH
    } else {
        // The header will require an extra byte.
        8 - (BLOCK_MARKER_LENGTH - free_space)
    }
    .into()
}

/// Calculate the number of bits storing the data in stored blocks will take up, excluding the
/// first block start code and potential padding bits. As stored blocks have a maximum length,
/// (as opposed to fixed and dynamic ones), multiple blocks may have to be utilised.
///
/// # Panics
/// Panics if `input_bytes` is 0.
fn stored_length(input_bytes: u64) -> u64 {
    // Check how many stored blocks these bytes would take up.
    // (Integer divison rounding up.)
    let num_blocks = (input_bytes
        .checked_sub(1)
        .expect("Underflow calculating stored block length!")
        / MAX_STORED_BLOCK_LENGTH as u64)
        + 1;
    // The length will be the input length and the headers for each block. (Excluding the start
    // of block code for the first one)
    (input_bytes + (STORED_BLOCK_HEADER_LENGTH as u64 * num_blocks) + (num_blocks - 1)) * 8
}

pub enum BlockType {
    Stored,
    Fixed,
    Dynamic(DynamicBlockHeader),
}

/// A struct containing the different data needed to write the header for a dynamic block.
///
/// The code lengths are stored directly in the `HuffmanTable` struct.
/// TODO: Do the same for other things here.
pub struct DynamicBlockHeader {
    /// Length of the run-length encoding symbols.
    pub huffman_table_lengths: Vec<u8>,
    /// Number of lengths for values describing the Huffman table that encodes the length values
    /// of the main Huffman tables.
    pub used_hclens: usize,
}

/// Generate the lengths of the Huffman codes we will be using, using the
/// frequency of the different symbols/lengths/distances, and determine what block type will give
/// the shortest representation.
/// TODO: This needs a test
pub fn gen_huffman_lengths(
    l_freqs: &[FrequencyType],
    d_freqs: &[FrequencyType],
    num_input_bytes: u64,
    pending_bits: u8,
    l_lengths: &mut [u8; 288],
    d_lengths: &mut [u8; 32],
    length_buffers: &mut LengthBuffers,
) -> BlockType {
    // Avoid corner cases and issues if this is called for an empty block.
    // For blocks this short, a fixed block will be the shortest.
    // TODO: Find the minimum value it's worth doing calculations for.
    if num_input_bytes <= 4 {
        return BlockType::Fixed;
    };

    let l_freqs = remove_trailing_zeroes(l_freqs, MIN_NUM_LITERALS_AND_LENGTHS);
    let d_freqs = remove_trailing_zeroes(d_freqs, MIN_NUM_DISTANCES);

    // The huffman spec allows us to exclude zeroes at the end of the
    // table of huffman lengths.
    // Since a frequency of 0 will give an huffman
    // length of 0. We strip off the trailing zeroes before even
    // generating the lengths to save some work.
    // There is however a minimum number of values we have to keep
    // according to the deflate spec.
    // TODO: We could probably compute some of this in parallel.
    huffman_lengths_from_frequency_m(
        l_freqs,
        MAX_CODE_LENGTH,
        &mut length_buffers.leaf_buf,
        l_lengths,
    );
    huffman_lengths_from_frequency_m(
        d_freqs,
        MAX_CODE_LENGTH,
        &mut length_buffers.leaf_buf,
        d_lengths,
    );

    let used_lengths = l_freqs.len();
    let used_distances = d_freqs.len();

    // Encode length values
    let mut freqs = [0u16; 19];
    encode_lengths_m(
        l_lengths[..used_lengths]
            .iter()
            .chain(&d_lengths[..used_distances]),
        &mut length_buffers.length_buf,
        &mut freqs,
    );

    // Create huffman lengths for the length/distance code lengths
    let mut huffman_table_lengths = vec![0; freqs.len()];
    huffman_lengths_from_frequency_m(
        &freqs,
        MAX_HUFFMAN_CODE_LENGTH,
        &mut length_buffers.leaf_buf,
        huffman_table_lengths.as_mut_slice(),
    );

    // Count how many of these lengths we use.
    let used_hclens = HUFFMAN_LENGTH_ORDER.len()
        - HUFFMAN_LENGTH_ORDER
            .iter()
            .rev()
            .take_while(|&&n| huffman_table_lengths[n as usize] == 0)
            .count();

    // There has to be at least 4 hclens, so if there isn't, something went wrong.
    debug_assert!(used_hclens >= 4);

    // Calculate how many bytes of space this block will take up with the different block types
    // (excluding the 3-bit block header since it's used in all block types).

    // Total length of the compressed literals/lengths.
    let (d_ll_length, s_ll_length) = calculate_block_length(l_freqs, l_lengths, &|c| {
        num_extra_bits_for_length_code(c.saturating_sub(LENGTH_BITS_START as usize) as u8).into()
    });

    // Total length of the compressed distances.
    let (d_dist_length, s_dist_length) = calculate_block_length(d_freqs, d_lengths, &|c| {
        num_extra_bits_for_distance_code(c as u8).into()
    });

    // Total length of the compressed huffman code lengths.
    let huff_table_length = calculate_huffman_length(&freqs, &huffman_table_lengths);

    // For dynamic blocks the huffman tables takes up some extra space.
    let dynamic_length = d_ll_length
        + d_dist_length
        + huff_table_length
        + (used_hclens as u64 * 3)
        + u64::from(HLIT_BITS)
        + u64::from(HDIST_BITS)
        + u64::from(HCLEN_BITS);

    // Static blocks don't have any extra header data.
    let static_length = s_ll_length + s_dist_length;

    // Calculate how many bits it will take to store the data in uncompressed (stored) block(s).
    let stored_length = stored_length(num_input_bytes) + stored_padding(pending_bits % 8);

    let used_length = cmp::min(cmp::min(dynamic_length, static_length), stored_length);

    // Check if the block is actually compressed. If using a dynamic block
    // increases the length of the block (for instance if the input data is mostly random or
    // already compressed), we want to output a stored(uncompressed) block instead to avoid wasting
    // space.
    if used_length == static_length {
        BlockType::Fixed
    } else if used_length == stored_length {
        BlockType::Stored
    } else {
        BlockType::Dynamic(DynamicBlockHeader {
            huffman_table_lengths,
            used_hclens,
        })
    }
}

/// Write the specified Huffman lengths to the bit writer
pub fn write_huffman_lengths(
    header: &DynamicBlockHeader,
    huffman_table: &HuffmanTable,
    encoded_lengths: &[EncodedLength],
    writer: &mut LsbWriter,
) {
    // Ignore trailing zero lengths as allowed by the deflate spec.
    let (literal_len_lengths, distance_lengths) = huffman_table.get_lengths();
    let literal_len_lengths =
        remove_trailing_zeroes(literal_len_lengths, MIN_NUM_LITERALS_AND_LENGTHS);
    let distance_lengths = remove_trailing_zeroes(distance_lengths, MIN_NUM_DISTANCES);
    let huffman_table_lengths = &header.huffman_table_lengths;
    let used_hclens = header.used_hclens;

    assert!(literal_len_lengths.len() <= NUM_LITERALS_AND_LENGTHS);
    assert!(literal_len_lengths.len() >= MIN_NUM_LITERALS_AND_LENGTHS);
    assert!(distance_lengths.len() <= NUM_DISTANCE_CODES);
    assert!(distance_lengths.len() >= MIN_NUM_DISTANCES);

    // Number of length codes - 257.
    let hlit = (literal_len_lengths.len() - MIN_NUM_LITERALS_AND_LENGTHS) as u16;
    writer.write_bits(hlit, HLIT_BITS);
    // Number of distance codes - 1.
    let hdist = (distance_lengths.len() - MIN_NUM_DISTANCES) as u16;
    writer.write_bits(hdist, HDIST_BITS);

    // Number of huffman table lengths - 4.
    let hclen = used_hclens.saturating_sub(4);

    // Write HCLEN.
    // Casting to u16 is safe since the length can never be more than the length of
    // `HUFFMAN_LENGTH_ORDER` anyhow.
    writer.write_bits(hclen as u16, HCLEN_BITS);

    // Write the lengths for the huffman table describing the huffman table
    // Each length is 3 bits
    for n in &HUFFMAN_LENGTH_ORDER[..used_hclens] {
        writer.write_bits(u16::from(huffman_table_lengths[usize::from(*n)]), 3);
    }

    // Generate codes for the main huffman table using the lengths we just wrote
    let mut codes = [0u16; NUM_HUFFMAN_LENGTHS];
    create_codes_in_place(&mut codes[..], huffman_table_lengths);

    // Write the actual huffman lengths
    for v in encoded_lengths {
        match *v {
            EncodedLength::Length(n) => {
                let (c, l) = (codes[usize::from(n)], huffman_table_lengths[usize::from(n)]);
                writer.write_bits(c, l);
            }
            EncodedLength::CopyPrevious(n) => {
                let (c, l) = (codes[COPY_PREVIOUS], huffman_table_lengths[COPY_PREVIOUS]);
                writer.write_bits(c, l);
                debug_assert!(n >= 3);
                debug_assert!(n <= 6);
                writer.write_bits((n - 3).into(), 2);
            }
            EncodedLength::RepeatZero3Bits(n) => {
                let (c, l) = (
                    codes[REPEAT_ZERO_3_BITS],
                    huffman_table_lengths[REPEAT_ZERO_3_BITS],
                );
                writer.write_bits(c, l);
                debug_assert!(n >= 3);
                writer.write_bits((n - 3).into(), 3);
            }
            EncodedLength::RepeatZero7Bits(n) => {
                let (c, l) = (
                    codes[REPEAT_ZERO_7_BITS],
                    huffman_table_lengths[REPEAT_ZERO_7_BITS],
                );
                writer.write_bits(c, l);
                debug_assert!(n >= 11);
                debug_assert!(n <= 138);
                writer.write_bits((n - 11).into(), 7);
            }
        }
    }
}

#[cfg(test)]
mod test {
    use super::stored_padding;
    #[test]
    fn padding() {
        assert_eq!(stored_padding(0), 5);
        assert_eq!(stored_padding(1), 4);
        assert_eq!(stored_padding(2), 3);
        assert_eq!(stored_padding(3), 2);
        assert_eq!(stored_padding(4), 1);
        assert_eq!(stored_padding(5), 0);
        assert_eq!(stored_padding(6), 7);
        assert_eq!(stored_padding(7), 6);
    }
}