1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
mod stream;
mod zlib;

use self::stream::{get_info, CHUNCK_BUFFER_SIZE};
pub use self::stream::{Decoded, DecodingError, StreamingDecoder};

use std::borrow;
use std::io::{BufRead, BufReader, Read, Write};
use std::mem;
use std::ops::Range;

use crate::chunk;
use crate::common::{BitDepth, BytesPerPixel, ColorType, Info, Transformations};
use crate::filter::{unfilter, FilterType};
use crate::utils;

/*
pub enum InterlaceHandling {
    /// Outputs the raw rows
    RawRows,
    /// Fill missing the pixels from the existing ones
    Rectangle,
    /// Only fill the needed pixels
    Sparkle
}
*/

/// Output info
#[derive(Debug, PartialEq, Eq)]
pub struct OutputInfo {
    pub width: u32,
    pub height: u32,
    pub color_type: ColorType,
    pub bit_depth: BitDepth,
    pub line_size: usize,
}

impl OutputInfo {
    /// Returns the size needed to hold a decoded frame
    pub fn buffer_size(&self) -> usize {
        self.line_size * self.height as usize
    }
}

#[derive(Clone, Copy, Debug)]
/// Limits on the resources the `Decoder` is allowed too use
pub struct Limits {
    /// maximum number of bytes the decoder is allowed to allocate, default is 64Mib
    pub bytes: usize,
}

impl Default for Limits {
    fn default() -> Limits {
        Limits {
            bytes: 1024 * 1024 * 64,
        }
    }
}

/// PNG Decoder
pub struct Decoder<R: Read> {
    /// Reader
    r: R,
    /// Output transformations
    transform: Transformations,
    /// Limits on resources the Decoder is allowed to use
    limits: Limits,
}

struct InterlacedRow<'data> {
    data: &'data [u8],
    interlace: InterlaceInfo,
}

enum InterlaceInfo {
    None,
    Adam7 { pass: u8, line: u32, width: u32 },
}

impl<R: Read> Decoder<R> {
    pub fn new(r: R) -> Decoder<R> {
        Decoder::new_with_limits(r, Limits::default())
    }

    pub fn new_with_limits(r: R, limits: Limits) -> Decoder<R> {
        Decoder {
            r,
            transform: crate::Transformations::EXPAND
                | crate::Transformations::SCALE_16
                | crate::Transformations::STRIP_16,
            limits,
        }
    }

    /// Limit resource usage
    ///
    /// ```
    /// use std::fs::File;
    /// use png::{Decoder, Limits};
    /// // This image is 32x32 pixels, so the deocder will allocate more than four bytes
    /// let mut limits = Limits::default();
    /// limits.bytes = 4;
    /// let mut decoder = Decoder::new_with_limits(File::open("tests/pngsuite/basi0g01.png").unwrap(), limits);
    /// assert!(decoder.read_info().is_err());
    /// // This image is 32x32 pixels, so the decoder will allocate less than 10Kib
    /// let mut limits = Limits::default();
    /// limits.bytes = 10*1024;
    /// let mut decoder = Decoder::new_with_limits(File::open("tests/pngsuite/basi0g01.png").unwrap(), limits);
    /// assert!(decoder.read_info().is_ok());
    /// ```
    pub fn set_limits(&mut self, limits: Limits) {
        self.limits = limits;
    }

    /// Reads all meta data until the first IDAT chunk
    pub fn read_info(self) -> Result<(OutputInfo, Reader<R>), DecodingError> {
        let mut r = Reader::new(self.r, StreamingDecoder::new(), self.transform, self.limits);
        r.init()?;

        let color_type = r.info().color_type;
        let bit_depth = r.info().bit_depth;
        if color_type.is_combination_invalid(bit_depth) {
            return Err(DecodingError::Format(
                format!(
                    "Invalid color/depth combination in header: {:?}/{:?}",
                    color_type, bit_depth
                )
                .into(),
            ));
        }

        // Check if the output buffer can be represented at all.
        if r.checked_output_buffer_size().is_none() {
            return Err(DecodingError::LimitsExceeded);
        }

        let (ct, bits) = r.output_color_type();
        let info = {
            let info = r.info();
            OutputInfo {
                width: info.width,
                height: info.height,
                color_type: ct,
                bit_depth: bits,
                line_size: r.output_line_size(info.width),
            }
        };
        Ok((info, r))
    }

    /// Set the allowed and performed transformations.
    ///
    /// A transformation is a pre-processing on the raw image data modifying content or encoding.
    /// Many options have an impact on memory or CPU usage during decoding.
    pub fn set_transformations(&mut self, transform: Transformations) {
        self.transform = transform;
    }
}

struct ReadDecoder<R: Read> {
    reader: BufReader<R>,
    decoder: StreamingDecoder,
    at_eof: bool,
}

impl<R: Read> ReadDecoder<R> {
    /// Returns the next decoded chunk. If the chunk is an ImageData chunk, its contents are written
    /// into image_data.
    fn decode_next(&mut self, image_data: &mut Vec<u8>) -> Result<Option<Decoded>, DecodingError> {
        while !self.at_eof {
            let (consumed, result) = {
                let buf = self.reader.fill_buf()?;
                if buf.is_empty() {
                    return Err(DecodingError::Format("unexpected EOF".into()));
                }
                self.decoder.update(buf, image_data)?
            };
            self.reader.consume(consumed);
            match result {
                Decoded::Nothing => (),
                Decoded::ImageEnd => self.at_eof = true,
                result => return Ok(Some(result)),
            }
        }
        Ok(None)
    }

    fn finished_decoding(&mut self) -> Result<(), DecodingError> {
        while !self.at_eof {
            let buf = self.reader.fill_buf()?;
            if buf.is_empty() {
                return Err(DecodingError::Format("unexpected EOF after image".into()));
            }
            let (consumed, event) = self.decoder.update(buf, &mut vec![])?;
            self.reader.consume(consumed);
            match event {
                Decoded::Nothing => (),
                Decoded::ImageEnd => self.at_eof = true,
                // ignore more data
                Decoded::ChunkComplete(_, _) | Decoded::ChunkBegin(_, _) | Decoded::ImageData => {}
                Decoded::ImageDataFlushed => return Ok(()),
                Decoded::PartialChunk(_) => {}
                new => unreachable!("{:?}", new),
            }
        }

        Err(DecodingError::Format("unexpected EOF after image".into()))
    }

    fn info(&self) -> Option<&Info> {
        get_info(&self.decoder)
    }
}

/// PNG reader (mostly high-level interface)
///
/// Provides a high level that iterates over lines or whole images.
pub struct Reader<R: Read> {
    decoder: ReadDecoder<R>,
    bpp: BytesPerPixel,
    subframe: SubframeInfo,
    /// Number of frame control chunks read.
    /// By the APNG specification the total number must equal the count specified in the animation
    /// control chunk. The IDAT image _may_ have such a chunk applying to it.
    fctl_read: u32,
    next_frame: SubframeIdx,
    /// Previous raw line
    prev: Vec<u8>,
    /// Current raw line
    current: Vec<u8>,
    /// Start index of the current scan line.
    scan_start: usize,
    /// Output transformations
    transform: Transformations,
    /// Processed line
    processed: Vec<u8>,
    limits: Limits,
}

/// The subframe specific information.
///
/// In APNG the frames are constructed by combining previous frame and a new subframe (through a
/// combination of `dispose_op` and `overlay_op`). These sub frames specify individual dimension
/// information and reuse the global interlace options. This struct encapsulates the state of where
/// in a particular IDAT-frame or subframe we are.
struct SubframeInfo {
    width: u32,
    rowlen: usize,
    interlace: InterlaceIter,
    consumed_and_flushed: bool,
}

#[derive(Clone)]
enum InterlaceIter {
    None(Range<u32>),
    Adam7(utils::Adam7Iterator),
}

/// Denote a frame as given by sequence numbers.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
enum SubframeIdx {
    /// The info has not yet been decoded.
    Uninit,
    /// The initial frame in an IDAT chunk without fcTL chunk applying to it.
    /// Note that this variant precedes `Some` as IDAT frames precede fdAT frames and all fdAT
    /// frames must have a fcTL applying to it.
    Initial,
    /// An IDAT frame with fcTL or an fdAT frame.
    Some(u32),
    /// The past-the-end index.
    End,
}

macro_rules! get_info(
    ($this:expr) => {
        $this.decoder.info().unwrap()
    }
);

impl<R: Read> Reader<R> {
    /// Creates a new PNG reader
    fn new(r: R, d: StreamingDecoder, t: Transformations, limits: Limits) -> Reader<R> {
        Reader {
            decoder: ReadDecoder {
                reader: BufReader::with_capacity(CHUNCK_BUFFER_SIZE, r),
                decoder: d,
                at_eof: false,
            },
            bpp: BytesPerPixel::One,
            subframe: SubframeInfo::not_yet_init(),
            fctl_read: 0,
            next_frame: SubframeIdx::Initial,
            prev: Vec::new(),
            current: Vec::new(),
            scan_start: 0,
            transform: t,
            processed: Vec::new(),
            limits,
        }
    }

    /// Reads all meta data until the next frame data starts.
    /// Requires IHDR before the IDAT and fcTL before fdAT.
    fn init(&mut self) -> Result<(), DecodingError> {
        if self.next_frame == self.subframe_idx() {
            return Ok(());
        } else if self.next_frame == SubframeIdx::End {
            return Err(DecodingError::Other("End of image has been reached".into()));
        }

        loop {
            match self.decoder.decode_next(&mut Vec::new())? {
                Some(Decoded::ChunkBegin(_, chunk::IDAT))
                | Some(Decoded::ChunkBegin(_, chunk::fdAT)) => break,
                Some(Decoded::FrameControl(_)) => {
                    self.subframe = SubframeInfo::new(self.info());
                    // The next frame is the one to which this chunk applies.
                    self.next_frame = SubframeIdx::Some(self.fctl_read);
                    // TODO: what about overflow here? That would imply there are more fctl chunks
                    // than can be specified in the animation control but also that we have read
                    // several gigabytes of data.
                    self.fctl_read += 1;
                }
                None => return Err(DecodingError::Format("IDAT chunk missing".into())),
                Some(Decoded::Header { .. }) => {
                    self.validate_buffer_sizes()?;
                }
                // Ignore all other chunk events. Any other chunk may be between IDAT chunks, fdAT
                // chunks and their control chunks.
                _ => {}
            }
        }
        {
            let info = match self.decoder.info() {
                Some(info) => info,
                None => return Err(DecodingError::Format("IHDR chunk missing".into())),
            };
            self.bpp = info.bpp_in_prediction();
            // Check if the output buffer can be represented at all.
            // Now we can init the subframe info.
            // TODO: reuse the results obtained during the above check.
            self.subframe = SubframeInfo::new(info);
        }
        self.allocate_out_buf()?;
        self.prev = vec![0; self.subframe.rowlen];
        Ok(())
    }

    fn reset_current(&mut self) {
        self.current.clear();
        self.scan_start = 0;
    }

    /// Get information on the image.
    ///
    /// The structure will change as new frames of an animated image are decoded.
    pub fn info(&self) -> &Info {
        get_info!(self)
    }

    /// Get the subframe index of the current info.
    fn subframe_idx(&self) -> SubframeIdx {
        let info = match self.decoder.info() {
            None => return SubframeIdx::Uninit,
            Some(info) => info,
        };

        match info.frame_control() {
            None => SubframeIdx::Initial,
            Some(_) => SubframeIdx::Some(self.fctl_read - 1),
        }
    }

    /// Call after decoding an image, to advance expected state to the next.
    fn finished_frame(&mut self) {
        // Should only be called after frame is done, so we have an info.
        let info = self.info();

        let past_end_subframe = match info.animation_control() {
            // a non-APNG has no subframes
            None => 0,
            // otherwise the count is the past-the-end index. It can not be 0 per spec.
            Some(ac) => ac.num_frames,
        };

        self.next_frame = match self.next_frame {
            SubframeIdx::Uninit => unreachable!("Next frame can never be initial"),
            SubframeIdx::End => unreachable!("Next frame called when already at image end"),
            // Reached the end of non-animated image.
            SubframeIdx::Initial if past_end_subframe == 0 => SubframeIdx::End,
            // An animated image, expecting first subframe.
            SubframeIdx::Initial => SubframeIdx::Some(0),
            // This was the last subframe, slightly fuzzy condition in case of programmer error.
            SubframeIdx::Some(idx) if past_end_subframe <= idx + 1 => SubframeIdx::End,
            // Expecting next subframe.
            SubframeIdx::Some(idx) => SubframeIdx::Some(idx + 1),
        }
    }

    /// Decodes the next frame into `buf`.
    ///
    /// Note that this decodes raw subframes that need to be mixed according to blend-op and
    /// dispose-op by the caller.
    ///
    /// The caller must always provide a buffer large enough to hold a complete frame (the APNG
    /// specification restricts subframes to the dimensions given in the image header). The region
    /// that has been written be checked afterwards by calling `info` after a successful call and
    /// inspecting the `frame_control` data. This requirement may be lifted in a later version of
    /// `png`.
    ///
    /// Output lines will be written in row-major, packed matrix with width and height of the read
    /// frame (or subframe), all samples are in big endian byte order where this matters.
    pub fn next_frame(&mut self, buf: &mut [u8]) -> Result<(), DecodingError> {
        // Advance until we've read the info / fcTL for this frame.
        self.init()?;
        // TODO 16 bit
        let (color_type, bit_depth) = self.output_color_type();
        if buf.len() < self.output_buffer_size() {
            return Err(DecodingError::Other(
                "supplied buffer is too small to hold the image".into(),
            ));
        }

        self.reset_current();
        let width = self.info().width;
        if get_info!(self).interlaced {
            while let Some((row, adam7)) = self.next_interlaced_row()? {
                let (pass, line, _) = adam7.unwrap();
                let samples = color_type.samples() as u8;
                utils::expand_pass(buf, width, row, pass, line, samples * (bit_depth as u8));
            }
        } else {
            let mut len = 0;
            while let Some(row) = self.next_row()? {
                len += (&mut buf[len..]).write(row)?;
            }
        }
        // Advance over the rest of data for this (sub-)frame.
        if !self.subframe.consumed_and_flushed {
            self.decoder.finished_decoding()?;
        }
        // Advance our state to expect the next frame.
        self.finished_frame();
        Ok(())
    }

    /// Returns the next processed row of the image
    pub fn next_row(&mut self) -> Result<Option<&[u8]>, DecodingError> {
        self.next_interlaced_row().map(|v| v.map(|v| v.0))
    }

    /// Returns the next processed row of the image
    pub fn next_interlaced_row(
        &mut self,
    ) -> Result<Option<(&[u8], Option<(u8, u32, u32)>)>, DecodingError> {
        match self.next_interlaced_row_impl() {
            Err(err) => Err(err),
            Ok(None) => Ok(None),
            Ok(Some(row)) => {
                let interlace = match row.interlace {
                    InterlaceInfo::None => None,
                    InterlaceInfo::Adam7 { pass, line, width } => Some((pass, line, width)),
                };

                Ok(Some((row.data, interlace)))
            }
        }
    }

    /// Fetch the next interlaced row and filter it according to our own transformations.
    fn next_interlaced_row_impl(&mut self) -> Result<Option<InterlacedRow<'_>>, DecodingError> {
        use crate::common::ColorType::*;
        let transform = self.transform;

        if transform == crate::Transformations::IDENTITY {
            return self.next_raw_interlaced_row();
        }

        // swap buffer to circumvent borrow issues
        let mut buffer = mem::replace(&mut self.processed, Vec::new());
        let (got_next, adam7) = if let Some(row) = self.next_raw_interlaced_row()? {
            (&mut buffer[..]).write_all(row.data)?;
            (true, row.interlace)
        } else {
            (false, InterlaceInfo::None)
        };
        // swap back
        let _ = mem::replace(&mut self.processed, buffer);

        if !got_next {
            return Ok(None);
        }

        let (color_type, bit_depth, trns) = {
            let info = get_info!(self);
            (info.color_type, info.bit_depth as u8, info.trns.is_some())
        };
        let output_buffer = if let InterlaceInfo::Adam7 { width, .. } = adam7 {
            let width = self
                .line_size(width)
                .expect("Adam7 interlaced rows are shorter than the buffer.");
            &mut self.processed[..width]
        } else {
            &mut *self.processed
        };

        let mut len = output_buffer.len();
        if transform.contains(crate::Transformations::EXPAND) {
            match color_type {
                Indexed => expand_paletted(output_buffer, get_info!(self))?,
                Grayscale | GrayscaleAlpha if bit_depth < 8 => {
                    expand_gray_u8(output_buffer, get_info!(self))
                }
                Grayscale | RGB if trns => {
                    let channels = color_type.samples();
                    let trns = get_info!(self).trns.as_ref().unwrap();
                    if bit_depth == 8 {
                        utils::expand_trns_line(output_buffer, &*trns, channels);
                    } else {
                        utils::expand_trns_line16(output_buffer, &*trns, channels);
                    }
                }
                _ => (),
            }
        }

        if bit_depth == 16
            && transform
                .intersects(crate::Transformations::SCALE_16 | crate::Transformations::STRIP_16)
        {
            len /= 2;
            for i in 0..len {
                output_buffer[i] = output_buffer[2 * i];
            }
        }

        Ok(Some(InterlacedRow {
            data: &output_buffer[..len],
            interlace: adam7,
        }))
    }

    /// Returns the color type and the number of bits per sample
    /// of the data returned by `Reader::next_row` and Reader::frames`.
    pub fn output_color_type(&mut self) -> (ColorType, BitDepth) {
        self.imm_output_color_type()
    }

    pub(crate) fn imm_output_color_type(&self) -> (ColorType, BitDepth) {
        use crate::common::ColorType::*;
        let t = self.transform;
        let info = get_info!(self);
        if t == crate::Transformations::IDENTITY {
            (info.color_type, info.bit_depth)
        } else {
            let bits = match info.bit_depth as u8 {
                16 if t.intersects(
                    crate::Transformations::SCALE_16 | crate::Transformations::STRIP_16,
                ) =>
                {
                    8
                }
                n if n < 8 && t.contains(crate::Transformations::EXPAND) => 8,
                n => n,
            };
            let color_type = if t.contains(crate::Transformations::EXPAND) {
                let has_trns = info.trns.is_some();
                match info.color_type {
                    Grayscale if has_trns => GrayscaleAlpha,
                    RGB if has_trns => RGBA,
                    Indexed if has_trns => RGBA,
                    Indexed => RGB,
                    ct => ct,
                }
            } else {
                info.color_type
            };
            (color_type, BitDepth::from_u8(bits).unwrap())
        }
    }

    /// Returns the number of bytes required to hold a deinterlaced image frame
    /// that is decoded using the given input transformations.
    pub fn output_buffer_size(&self) -> usize {
        let (width, height) = get_info!(self).size();
        let size = self.output_line_size(width);
        size * height as usize
    }

    fn validate_buffer_sizes(&self) -> Result<(), DecodingError> {
        // Check if the decoding buffer of a single raw line has a valid size.
        if self.info().checked_raw_row_length().is_none() {
            return Err(DecodingError::LimitsExceeded);
        }

        // Check if the output buffer has a valid size.
        if self.checked_output_buffer_size().is_none() {
            return Err(DecodingError::LimitsExceeded);
        }

        Ok(())
    }

    fn checked_output_buffer_size(&self) -> Option<usize> {
        let (width, height) = get_info!(self).size();
        let (color, depth) = self.imm_output_color_type();
        let rowlen = color.checked_raw_row_length(depth, width)? - 1;
        let height: usize = std::convert::TryFrom::try_from(height).ok()?;
        rowlen.checked_mul(height)
    }

    /// Returns the number of bytes required to hold a deinterlaced row.
    pub fn output_line_size(&self, width: u32) -> usize {
        let (color, depth) = self.imm_output_color_type();
        color.raw_row_length_from_width(depth, width) - 1
    }

    /// Returns the number of bytes required to decode a deinterlaced row.
    fn line_size(&self, width: u32) -> Option<usize> {
        use crate::common::ColorType::*;
        let t = self.transform;
        let info = get_info!(self);
        let trns = info.trns.is_some();

        let expanded = if info.bit_depth == BitDepth::Sixteen {
            BitDepth::Sixteen
        } else {
            BitDepth::Eight
        };
        // The color type and depth representing the decoded line
        // TODO 16 bit
        let (color, depth) = match info.color_type {
            Indexed if trns && t.contains(Transformations::EXPAND) => (RGBA, expanded),
            Indexed if t.contains(Transformations::EXPAND) => (RGB, expanded),
            RGB if trns && t.contains(Transformations::EXPAND) => (RGBA, expanded),
            Grayscale if trns && t.contains(Transformations::EXPAND) => (GrayscaleAlpha, expanded),
            Grayscale if t.contains(Transformations::EXPAND) => (Grayscale, expanded),
            GrayscaleAlpha if t.contains(Transformations::EXPAND) => (GrayscaleAlpha, expanded),
            other => (other, info.bit_depth),
        };

        // Without the filter method byte
        color.checked_raw_row_length(depth, width).map(|n| n - 1)
    }

    fn allocate_out_buf(&mut self) -> Result<(), DecodingError> {
        let width = self.subframe.width;
        let bytes = self.limits.bytes;
        let buflen = match self.line_size(width) {
            Some(buflen) if buflen <= bytes => buflen,
            // Should we differentiate between platform limits and others?
            _ => return Err(DecodingError::LimitsExceeded),
        };
        self.processed.resize(buflen, 0u8);
        Ok(())
    }

    fn next_pass(&mut self) -> Option<(usize, InterlaceInfo)> {
        match self.subframe.interlace {
            InterlaceIter::Adam7(ref mut adam7) => {
                let last_pass = adam7.current_pass();
                let (pass, line, width) = adam7.next()?;
                let rowlen = get_info!(self).raw_row_length_from_width(width);
                if last_pass != pass {
                    self.prev.clear();
                    self.prev.resize(rowlen, 0u8);
                }
                Some((rowlen, InterlaceInfo::Adam7 { pass, line, width }))
            }
            InterlaceIter::None(ref mut height) => {
                let _ = height.next()?;
                Some((self.subframe.rowlen, InterlaceInfo::None))
            }
        }
    }

    /// Returns the next raw scanline of the image interlace pass.
    /// The scanline is filtered against the previous scanline according to the specification.
    fn next_raw_interlaced_row(&mut self) -> Result<Option<InterlacedRow<'_>>, DecodingError> {
        let bpp = self.bpp;
        let (rowlen, passdata) = match self.next_pass() {
            Some((rowlen, passdata)) => (rowlen, passdata),
            None => return Ok(None),
        };
        loop {
            if self.current.len() - self.scan_start >= rowlen {
                let row = &mut self.current[self.scan_start..];
                let filter = match FilterType::from_u8(row[0]) {
                    None => {
                        self.scan_start += rowlen;
                        return Err(DecodingError::Format(
                            format!("invalid filter method ({})", row[0]).into(),
                        ));
                    }
                    Some(filter) => filter,
                };

                if let Err(message) =
                    unfilter(filter, bpp, &self.prev[1..rowlen], &mut row[1..rowlen])
                {
                    return Err(DecodingError::Format(borrow::Cow::Borrowed(message)));
                }

                self.prev[..rowlen].copy_from_slice(&row[..rowlen]);
                self.scan_start += rowlen;

                return Ok(Some(InterlacedRow {
                    data: &self.prev[1..rowlen],
                    interlace: passdata,
                }));
            } else {
                if self.subframe.consumed_and_flushed {
                    return Err(DecodingError::Format(
                        format!("not enough data for image").into(),
                    ));
                }

                // Clear the current buffer before appending more data.
                if self.scan_start > 0 {
                    self.current.drain(..self.scan_start).for_each(drop);
                    self.scan_start = 0;
                }

                let val = self.decoder.decode_next(&mut self.current)?;
                match val {
                    Some(Decoded::ImageData) => {}
                    Some(Decoded::ImageDataFlushed) => {
                        self.subframe.consumed_and_flushed = true;
                    }
                    None => {
                        if !self.current.is_empty() {
                            return Err(DecodingError::Format("file truncated".into()));
                        } else {
                            return Ok(None);
                        }
                    }
                    _ => (),
                }
            }
        }
    }
}

impl SubframeInfo {
    fn not_yet_init() -> Self {
        SubframeInfo {
            width: 0,
            rowlen: 0,
            interlace: InterlaceIter::None(0..0),
            consumed_and_flushed: false,
        }
    }

    fn new(info: &Info) -> Self {
        // The apng fctnl overrides width and height.
        // All other data is set by the main info struct.
        let (width, height) = if let Some(fc) = info.frame_control {
            (fc.width, fc.height)
        } else {
            (info.width, info.height)
        };

        let interlace = if info.interlaced {
            InterlaceIter::Adam7(utils::Adam7Iterator::new(width, height))
        } else {
            InterlaceIter::None(0..height)
        };

        SubframeInfo {
            width,
            rowlen: info.raw_row_length_from_width(width),
            interlace,
            consumed_and_flushed: false,
        }
    }
}

fn expand_paletted(buffer: &mut [u8], info: &Info) -> Result<(), DecodingError> {
    if let Some(palette) = info.palette.as_ref() {
        if let BitDepth::Sixteen = info.bit_depth {
            Err(DecodingError::Format(
                "Bit depth '16' is not valid for paletted images".into(),
            ))
        } else {
            let black = [0, 0, 0];
            if let Some(ref trns) = info.trns {
                utils::unpack_bits(buffer, 4, info.bit_depth as u8, |i, chunk| {
                    let (rgb, a) = (
                        palette
                            .get(3 * i as usize..3 * i as usize + 3)
                            .unwrap_or(&black),
                        *trns.get(i as usize).unwrap_or(&0xFF),
                    );
                    chunk[0] = rgb[0];
                    chunk[1] = rgb[1];
                    chunk[2] = rgb[2];
                    chunk[3] = a;
                });
            } else {
                utils::unpack_bits(buffer, 3, info.bit_depth as u8, |i, chunk| {
                    let rgb = palette
                        .get(3 * i as usize..3 * i as usize + 3)
                        .unwrap_or(&black);
                    chunk[0] = rgb[0];
                    chunk[1] = rgb[1];
                    chunk[2] = rgb[2];
                })
            }
            Ok(())
        }
    } else {
        Err(DecodingError::Format("missing palette".into()))
    }
}

fn expand_gray_u8(buffer: &mut [u8], info: &Info) {
    let rescale = true;
    let scaling_factor = if rescale {
        (255) / ((1u16 << info.bit_depth as u8) - 1) as u8
    } else {
        1
    };
    if let Some(ref trns) = info.trns {
        utils::unpack_bits(buffer, 2, info.bit_depth as u8, |pixel, chunk| {
            if pixel == trns[0] {
                chunk[1] = 0
            } else {
                chunk[1] = 0xFF
            }
            chunk[0] = pixel * scaling_factor
        })
    } else {
        utils::unpack_bits(buffer, 1, info.bit_depth as u8, |val, chunk| {
            chunk[0] = val * scaling_factor
        })
    }
}

#[cfg(test)]
mod tests {
    use super::Decoder;
    use std::io::{BufRead, Read, Result};
    use std::mem::discriminant;

    /// A reader that reads at most `n` bytes.
    struct SmalBuf<R: BufRead> {
        inner: R,
        cap: usize,
    }

    impl<R: BufRead> SmalBuf<R> {
        fn new(inner: R, cap: usize) -> Self {
            SmalBuf { inner, cap }
        }
    }

    impl<R: BufRead> Read for SmalBuf<R> {
        fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
            let len = buf.len().min(self.cap);
            self.inner.read(&mut buf[..len])
        }
    }

    impl<R: BufRead> BufRead for SmalBuf<R> {
        fn fill_buf(&mut self) -> Result<&[u8]> {
            let buf = self.inner.fill_buf()?;
            let len = buf.len().min(self.cap);
            Ok(&buf[..len])
        }

        fn consume(&mut self, amt: usize) {
            assert!(amt <= self.cap);
            self.inner.consume(amt)
        }
    }

    #[test]
    fn no_data_dup_on_finish() {
        const IMG: &[u8] = include_bytes!(concat!(
            env!("CARGO_MANIFEST_DIR"),
            "/tests/bugfixes/x_issue#214.png"
        ));

        let (info, mut normal) = Decoder::new(IMG).read_info().unwrap();

        let mut buffer = vec![0; info.buffer_size()];
        let normal = normal.next_frame(&mut buffer).unwrap_err();

        let smal = Decoder::new(SmalBuf::new(IMG, 1))
            .read_info()
            .unwrap()
            .1
            .next_frame(&mut buffer)
            .unwrap_err();

        assert_eq!(discriminant(&normal), discriminant(&smal));
    }
}