1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
use std::iter::IntoIterator;

use crate::bounding_volume::AABB;
use crate::math::{Isometry, Point, Vector, DIM};
use crate::shape::SupportMap;
use na::{self, RealField};

/// Computes the AABB of an support mapped shape.
pub fn support_map_aabb<N, G>(m: &Isometry<N>, i: &G) -> AABB<N>
where
    N: RealField,
    G: SupportMap<N>,
{
    let mut min = na::zero::<Vector<N>>();
    let mut max = na::zero::<Vector<N>>();
    let mut basis = na::zero::<Vector<N>>();

    for d in 0..DIM {
        // FIXME: this could be further improved iterating on `m`'s columns, and passing
        // Id as the transformation matrix.
        basis[d] = na::one();
        max[d] = i.support_point(m, &basis)[d];

        basis[d] = -na::one::<N>();
        min[d] = i.support_point(m, &basis)[d];

        basis[d] = na::zero();
    }

    AABB::new(Point::from(min), Point::from(max))
}

/// Computes the AABB of an support mapped shape.
pub fn local_support_map_aabb<N, G>(i: &G) -> AABB<N>
where
    N: RealField,
    G: SupportMap<N>,
{
    let mut min = na::zero::<Vector<N>>();
    let mut max = na::zero::<Vector<N>>();
    let mut basis = na::zero::<Vector<N>>();

    for d in 0..DIM {
        // FIXME: this could be further improved iterating on `m`'s columns, and passing
        // Id as the transformation matrix.
        basis[d] = na::one();
        max[d] = i.local_support_point(&basis)[d];

        basis[d] = -na::one::<N>();
        min[d] = i.local_support_point(&basis)[d];

        basis[d] = na::zero();
    }

    AABB::new(Point::from(min), Point::from(max))
}

/// Computes the AABB of a set of points transformed by `m`.
pub fn point_cloud_aabb<'a, N: RealField, I>(m: &Isometry<N>, pts: I) -> AABB<N>
where
    I: IntoIterator<Item = &'a Point<N>>,
{
    let mut it = pts.into_iter();

    let p0 = it.next().expect(
        "Point cloud AABB construction: the input iterator should yield at least one point.",
    );
    let wp0 = m.transform_point(&p0);
    let mut min: Point<N> = wp0;
    let mut max: Point<N> = wp0;

    for pt in it {
        let wpt = m * pt;
        min = min.inf(&wpt);
        max = max.sup(&wpt);
    }

    AABB::new(min, max)
}

/// Computes the AABB of a set of points.
pub fn local_point_cloud_aabb<'a, N: RealField, I>(pts: I) -> AABB<N>
where
    I: IntoIterator<Item = &'a Point<N>>,
{
    let mut it = pts.into_iter();

    let p0 = it.next().expect(
        "Point cloud AABB construction: the input iterator should yield at least one point.",
    );
    let mut min: Point<N> = *p0;
    let mut max: Point<N> = *p0;

    for pt in it {
        min = min.inf(&pt);
        max = max.sup(&pt);
    }

    AABB::new(min, max)
}