Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
use std::iter::IntoIterator;

use crate::bounding_volume::AABB;
use crate::math::{Isometry, Point, Vector, DIM};
use crate::shape::SupportMap;
use na::{self, RealField};

/// Computes the AABB of an support mapped shape.
pub fn support_map_aabb<N, G>(m: &Isometry<N>, i: &G) -> AABB<N>
where
    N: RealField,
    G: SupportMap<N>,
{
    let mut min = na::zero::<Vector<N>>();
    let mut max = na::zero::<Vector<N>>();
    let mut basis = na::zero::<Vector<N>>();

    for d in 0..DIM {
        // FIXME: this could be further improved iterating on `m`'s columns, and passing
        // Id as the transformation matrix.
        basis[d] = na::one();
        max[d] = i.support_point(m, &basis)[d];

        basis[d] = -na::one::<N>();
        min[d] = i.support_point(m, &basis)[d];

        basis[d] = na::zero();
    }

    AABB::new(Point::from(min), Point::from(max))
}

/// Computes the AABB of an support mapped shape.
pub fn local_support_map_aabb<N, G>(i: &G) -> AABB<N>
where
    N: RealField,
    G: SupportMap<N>,
{
    let mut min = na::zero::<Vector<N>>();
    let mut max = na::zero::<Vector<N>>();
    let mut basis = na::zero::<Vector<N>>();

    for d in 0..DIM {
        // FIXME: this could be further improved iterating on `m`'s columns, and passing
        // Id as the transformation matrix.
        basis[d] = na::one();
        max[d] = i.local_support_point(&basis)[d];

        basis[d] = -na::one::<N>();
        min[d] = i.local_support_point(&basis)[d];

        basis[d] = na::zero();
    }

    AABB::new(Point::from(min), Point::from(max))
}

/// Computes the AABB of a set of points transformed by `m`.
pub fn point_cloud_aabb<'a, N: RealField, I>(m: &Isometry<N>, pts: I) -> AABB<N>
where
    I: IntoIterator<Item = &'a Point<N>>,
{
    let mut it = pts.into_iter();

    let p0 = it.next().expect(
        "Point cloud AABB construction: the input iterator should yield at least one point.",
    );
    let wp0 = m.transform_point(&p0);
    let mut min: Point<N> = wp0;
    let mut max: Point<N> = wp0;

    for pt in it {
        let wpt = m * pt;
        min = min.inf(&wpt);
        max = max.sup(&wpt);
    }

    AABB::new(min, max)
}

/// Computes the AABB of a set of points.
pub fn local_point_cloud_aabb<'a, N: RealField, I>(pts: I) -> AABB<N>
where
    I: IntoIterator<Item = &'a Point<N>>,
{
    let mut it = pts.into_iter();

    let p0 = it.next().expect(
        "Point cloud AABB construction: the input iterator should yield at least one point.",
    );
    let mut min: Point<N> = *p0;
    let mut max: Point<N> = *p0;

    for pt in it {
        min = min.inf(&pt);
        max = max.sup(&pt);
    }

    AABB::new(min, max)
}