1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
use na::{self, Point2, RealField, Unit};
use std::iter;

use crate::math::{Isometry, Point, Vector};
use crate::query::ContactPreprocessor;
use crate::query::{
    self, Contact, ContactKinematic, ContactManifold, ContactPrediction, NeighborhoodGeometry,
};
use crate::shape::{FeatureId, Segment, SegmentPointLocation};
use crate::utils;

/// A cache used for polygonal clipping.
#[derive(Clone)]
pub struct ClippingCache<N: RealField> {
    poly1: Vec<Point2<N>>,
    poly2: Vec<Point2<N>>,
}

impl<N: RealField> ClippingCache<N> {
    /// Initializes an empty clipping cache.
    pub fn new() -> Self {
        ClippingCache {
            poly1: Vec::with_capacity(4),
            poly2: Vec::with_capacity(4),
        }
    }

    /// Clears the clipping cache.
    pub fn clear(&mut self) {
        self.poly1.clear();
        self.poly2.clear();
    }
}

/// Represents a convex polygonal approximation of a face of a solid.
///
/// It is never checked if the vertices actually form a convex polygon.
/// If they do not, results of any geometric query may end up being invalid.
#[derive(Clone, Debug)]
pub struct ConvexPolygonalFeature<N: RealField> {
    // FIXME: don't keep all those public.
    /// The vertices of this face.
    pub vertices: Vec<Point<N>>,
    /// The outward normal of the edges if it is a face.
    pub edge_normals: Vec<Vector<N>>,
    /// The normal of this feature if it is a face.
    pub normal: Option<Unit<Vector<N>>>,
    /// The shape-dependent identifier of this feature.
    pub feature_id: FeatureId,
    /// The shape-dependent indentifier of each vertex of this feature.
    pub vertices_id: Vec<FeatureId>,
    /// The shape-dependent indentifier of each edge of this feature.
    pub edges_id: Vec<FeatureId>,
}

impl<N: RealField> ConvexPolygonalFeature<N> {
    /// Creates a new empty convex polygonal faces.
    pub fn new() -> Self {
        ConvexPolygonalFeature {
            vertices: Vec::new(),
            edge_normals: Vec::new(),
            normal: None,
            feature_id: FeatureId::Unknown,
            vertices_id: Vec::new(),
            edges_id: Vec::new(),
        }
    }

    /// Creates a new convex polygonal feature with all field initialized with `n` zero elements.
    pub fn with_size(n: usize) -> Self {
        ConvexPolygonalFeature {
            vertices: iter::repeat(Point::origin()).take(n).collect(),
            edge_normals: iter::repeat(Vector::zeros()).take(n).collect(),
            normal: None,
            feature_id: FeatureId::Unknown,
            vertices_id: iter::repeat(FeatureId::Unknown).take(n).collect(),
            edges_id: iter::repeat(FeatureId::Unknown).take(n).collect(),
        }
    }

    /// Removes all the vertices, normals, and feature IDs of this feature.
    pub fn clear(&mut self) {
        self.vertices.clear();
        self.edge_normals.clear();
        self.vertices_id.clear();
        self.edges_id.clear();
        self.normal = None;
        self.feature_id = FeatureId::Unknown;
    }

    /// Transforms all the vertices and normals of this feature by the given isometry.
    pub fn transform_by(&mut self, m: &Isometry<N>) {
        for p in &mut self.vertices {
            *p = m * *p;
        }

        for n in &mut self.edge_normals {
            *n = m * *n;
        }

        if let Some(ref mut n) = self.normal {
            *n = m * *n;
        }
    }

    /// Adds a vertex to this face.
    ///
    /// It is not checked whether `pt` breaks the convexity of the polyhedral face.
    pub fn push(&mut self, pt: Point<N>, id: FeatureId) {
        self.vertices.push(pt);
        self.vertices_id.push(id);
    }

    /// The number of vertices of this face.
    pub fn nvertices(&self) -> usize {
        self.vertices.len()
    }

    /// The vertices of this convex polygonal face.
    pub fn vertices(&self) -> &[Point<N>] {
        &self.vertices[..]
    }

    /// The number of edges of this convex polygonal face.
    pub fn nedges(&self) -> usize {
        match self.vertices.len() {
            1 => 0,
            2 => 1,
            l => l,
        }
    }

    /// Retrieves the edge with the given feature id.
    pub fn edge(&self, edge_id: FeatureId) -> Option<Segment<N>> {
        for i1 in 0..self.vertices.len() {
            if self.edges_id[i1] == edge_id {
                let i2 = (i1 + 1) % self.vertices.len();
                return Some(Segment::new(self.vertices[i1], self.vertices[i2]));
            }
        }

        None
    }

    /// Adds a scaled edge normal to this face.
    pub fn push_scaled_edge_normal(&mut self, normal: Vector<N>) {
        if let Some(normal) = normal.try_normalize(N::default_epsilon()) {
            self.edge_normals.push(normal)
        } else {
            self.edge_normals.push(na::zero())
        }
    }

    /// Adds an edge normal to this face.
    pub fn push_edge_normal(&mut self, normal: Unit<Vector<N>>) {
        self.edge_normals.push(normal.into_inner())
    }

    /// Automatically recomputes the scaled edge normals (3D only).
    ///
    /// Panics if the ambient space is not 3D.
    pub fn recompute_edge_normals(&mut self) {
        self.edge_normals.clear();

        for i1 in 0..self.vertices.len() {
            let i2 = (i1 + 1) % self.vertices.len();
            let dpt = self.vertices[i2] - self.vertices[i1];
            let scaled_normal = dpt.cross(
                self.normal
                    .as_ref()
                    .expect("The face normal must be set before computing edge normals."),
            );
            self.push_scaled_edge_normal(scaled_normal)
        }
    }

    /// Transforms all the vertices of this feature by the given isometry.
    pub fn project_point(&self, pt: &Point<N>) -> Option<Contact<N>> {
        if let Some(n) = self.normal {
            let dpt = *pt - self.vertices[0];
            let dist = n.dot(&dpt);
            let proj = *pt + (-n.into_inner() * dist);

            for i in 0..self.edge_normals.len() {
                let dpt = proj - self.vertices[i];

                if dpt.dot(&self.edge_normals[i]) > na::zero() {
                    return None;
                }
            }

            Some(Contact::new(proj, *pt, n, -dist))
        } else {
            None
        }
    }

    /// Sets the outward normal of this convex polygonal face.
    pub fn set_normal(&mut self, normal: Unit<Vector<N>>) {
        self.normal = Some(normal)
    }

    /// Add the shape-dependent identifier of a edge of this feature (if it is a face).
    pub fn push_edge_feature_id(&mut self, id: FeatureId) {
        self.edges_id.push(id)
    }

    /// Add the shape-dependent identifier of this feature.
    pub fn set_feature_id(&mut self, id: FeatureId) {
        self.feature_id = id
    }

    /// Generate contacts between `self` and `other` using polygonal clipping, iif. they both have at least
    /// three vertices.
    ///
    /// If either `self` or `other` has less than three vertices, this does nothing.
    pub fn clip(
        &self,
        other: &Self,
        normal: &Unit<Vector<N>>,
        prediction: &ContactPrediction<N>,
        cache: &mut ClippingCache<N>,
        out: &mut Vec<(Contact<N>, FeatureId, FeatureId)>,
    ) {
        // FIXME: don't compute contacts further than the prediction.

        cache.clear();

        // FIXME: lift this restriction.
        if self.vertices.len() <= 2 && other.vertices.len() <= 2 {
            return;
        }

        // In 3D we may end up with more than two points.
        let mut basis = [na::zero(), na::zero()];
        let mut basis_i = 0;

        Vector::orthonormal_subspace_basis(&[normal.into_inner()], |dir| {
            basis[basis_i] = *dir;
            basis_i += 1;
            true
        });

        let ref_pt = self.vertices[0];

        for pt in &self.vertices {
            let dpt = *pt - ref_pt;
            let coords = Point2::new(basis[0].dot(&dpt), basis[1].dot(&dpt));
            cache.poly1.push(coords);
        }

        for pt in &other.vertices {
            let dpt = *pt - ref_pt;
            let coords = Point2::new(basis[0].dot(&dpt), basis[1].dot(&dpt));
            cache.poly2.push(coords);
        }

        if cache.poly2.len() > 2 {
            for i in 0..cache.poly1.len() {
                let pt = &cache.poly1[i];

                if utils::point_in_poly2d(pt, &cache.poly2) {
                    let origin = ref_pt + basis[0] * pt.x + basis[1] * pt.y;

                    let n2 = other.normal.as_ref().unwrap().into_inner();
                    let p2 = &other.vertices[0];
                    if let Some(toi2) =
                        query::line_toi_with_plane(p2, &n2, &origin, &normal.into_inner())
                    {
                        let world2 = origin + normal.into_inner() * toi2;
                        let world1 = self.vertices[i];
                        let f2 = other.feature_id;
                        let f1 = self.vertices_id[i];
                        let contact = Contact::new_wo_depth(world1, world2, *normal);

                        if -contact.depth <= prediction.linear() {
                            out.push((contact, f1, f2));
                        }
                    }
                }
            }
        }

        if cache.poly1.len() > 2 {
            for i in 0..cache.poly2.len() {
                let pt = &cache.poly2[i];

                if utils::point_in_poly2d(pt, &cache.poly1) {
                    let origin = ref_pt + basis[0] * pt.x + basis[1] * pt.y;

                    let n1 = self.normal.as_ref().unwrap().into_inner();
                    let p1 = &self.vertices[0];
                    if let Some(toi1) =
                        query::line_toi_with_plane(p1, &n1, &origin, &normal.into_inner())
                    {
                        let world1 = origin + normal.into_inner() * toi1;
                        let world2 = other.vertices[i];
                        let f1 = self.feature_id;
                        let f2 = other.vertices_id[i];
                        let contact = Contact::new_wo_depth(world1, world2, *normal);

                        if -contact.depth <= prediction.linear() {
                            out.push((contact, f1, f2));
                        }
                    }
                }
            }
        }

        let nedges1 = self.nedges();
        let nedges2 = other.nedges();

        for i1 in 0..nedges1 {
            let j1 = (i1 + 1) % cache.poly1.len();
            let seg1 = (&cache.poly1[i1], &cache.poly1[j1]);

            for i2 in 0..nedges2 {
                let j2 = (i2 + 1) % cache.poly2.len();
                let seg2 = (&cache.poly2[i2], &cache.poly2[j2]);

                if let (SegmentPointLocation::OnEdge(e1), SegmentPointLocation::OnEdge(e2)) =
                    query::closest_points_segment_segment_with_locations_nD(seg1, seg2)
                {
                    let original1 = Segment::new(self.vertices[i1], self.vertices[j1]);
                    let original2 = Segment::new(other.vertices[i2], other.vertices[j2]);
                    let world1 = original1.point_at(&SegmentPointLocation::OnEdge(e1));
                    let world2 = original2.point_at(&SegmentPointLocation::OnEdge(e2));
                    let f1 = self.edges_id[i1];
                    let f2 = other.edges_id[i2];
                    let contact = Contact::new_wo_depth(world1, world2, *normal);

                    if -contact.depth <= prediction.linear() {
                        out.push((contact, f1, f2));
                    }
                }
            }
        }
    }

    /// Given a contact between two polygonal features, adds it to a contact manifold.
    pub fn add_contact_to_manifold(
        &self,
        other: &Self,
        c: Contact<N>,
        m1: &Isometry<N>,
        f1: FeatureId,
        proc1: Option<&dyn ContactPreprocessor<N>>,
        m2: &Isometry<N>,
        f2: FeatureId,
        proc2: Option<&dyn ContactPreprocessor<N>>,
        manifold: &mut ContactManifold<N>,
    ) {
        let mut kinematic = ContactKinematic::new();
        let local1 = m1.inverse_transform_point(&c.world1);
        let local2 = m2.inverse_transform_point(&c.world2);

        match f1 {
            FeatureId::Face(..) => kinematic.set_approx1(
                f1,
                local1,
                NeighborhoodGeometry::Plane(
                    m1.inverse_transform_unit_vector(self.normal.as_ref().unwrap()),
                ),
            ),
            FeatureId::Edge(..) => {
                let e1 = self.edge(f1).expect("Invalid edge id.");
                if let Some(dir1) = e1.direction() {
                    let local_dir1 = m1.inverse_transform_unit_vector(&dir1);
                    let approx1 = NeighborhoodGeometry::Line(local_dir1);
                    kinematic.set_approx1(f1, local1, approx1)
                } else {
                    return;
                }
            }
            FeatureId::Vertex(..) => kinematic.set_approx1(f1, local1, NeighborhoodGeometry::Point),
            FeatureId::Unknown => return,
        }

        match f2 {
            FeatureId::Face(..) => {
                let approx2 = NeighborhoodGeometry::Plane(
                    m2.inverse_transform_unit_vector(&other.normal.as_ref().unwrap()),
                );
                kinematic.set_approx2(f2, local2, approx2)
            }
            FeatureId::Edge(..) => {
                let e2 = other.edge(f2).expect("Invalid edge id.");
                if let Some(dir2) = e2.direction() {
                    let local_dir2 = m2.inverse_transform_unit_vector(&dir2);
                    let approx2 = NeighborhoodGeometry::Line(local_dir2);
                    kinematic.set_approx2(f2, local2, approx2)
                } else {
                    return;
                }
            }
            FeatureId::Vertex(..) => kinematic.set_approx2(f2, local2, NeighborhoodGeometry::Point),
            FeatureId::Unknown => return,
        }

        let _ = manifold.push(c, kinematic, local1, proc1, proc2);
    }
}