Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */
/* double log1p(double x)
 * Return the natural logarithm of 1+x.
 *
 * Method :
 *   1. Argument Reduction: find k and f such that
 *                      1+x = 2^k * (1+f),
 *         where  sqrt(2)/2 < 1+f < sqrt(2) .
 *
 *      Note. If k=0, then f=x is exact. However, if k!=0, then f
 *      may not be representable exactly. In that case, a correction
 *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
 *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
 *      and add back the correction term c/u.
 *      (Note: when x > 2**53, one can simply return log(x))
 *
 *   2. Approximation of log(1+f): See log.c
 *
 *   3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
 *
 * Special cases:
 *      log1p(x) is NaN with signal if x < -1 (including -INF) ;
 *      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
 *      log1p(NaN) is that NaN with no signal.
 *
 * Accuracy:
 *      according to an error analysis, the error is always less than
 *      1 ulp (unit in the last place).
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 *
 * Note: Assuming log() return accurate answer, the following
 *       algorithm can be used to compute log1p(x) to within a few ULP:
 *
 *              u = 1+x;
 *              if(u==1.0) return x ; else
 *                         return log(u)*(x/(u-1.0));
 *
 *       See HP-15C Advanced Functions Handbook, p.193.
 */

use core::f64;

const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */

#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn log1p(x: f64) -> f64 {
    let mut ui: u64 = x.to_bits();
    let hfsq: f64;
    let mut f: f64 = 0.;
    let mut c: f64 = 0.;
    let s: f64;
    let z: f64;
    let r: f64;
    let w: f64;
    let t1: f64;
    let t2: f64;
    let dk: f64;
    let hx: u32;
    let mut hu: u32;
    let mut k: i32;

    hx = (ui >> 32) as u32;
    k = 1;
    if hx < 0x3fda827a || (hx >> 31) > 0 {
        /* 1+x < sqrt(2)+ */
        if hx >= 0xbff00000 {
            /* x <= -1.0 */
            if x == -1. {
                return x / 0.0; /* log1p(-1) = -inf */
            }
            return (x - x) / 0.0; /* log1p(x<-1) = NaN */
        }
        if hx << 1 < 0x3ca00000 << 1 {
            /* |x| < 2**-53 */
            /* underflow if subnormal */
            if (hx & 0x7ff00000) == 0 {
                force_eval!(x as f32);
            }
            return x;
        }
        if hx <= 0xbfd2bec4 {
            /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
            k = 0;
            c = 0.;
            f = x;
        }
    } else if hx >= 0x7ff00000 {
        return x;
    }
    if k > 0 {
        ui = (1. + x).to_bits();
        hu = (ui >> 32) as u32;
        hu += 0x3ff00000 - 0x3fe6a09e;
        k = (hu >> 20) as i32 - 0x3ff;
        /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
        if k < 54 {
            c = if k >= 2 {
                1. - (f64::from_bits(ui) - x)
            } else {
                x - (f64::from_bits(ui) - 1.)
            };
            c /= f64::from_bits(ui);
        } else {
            c = 0.;
        }
        /* reduce u into [sqrt(2)/2, sqrt(2)] */
        hu = (hu & 0x000fffff) + 0x3fe6a09e;
        ui = (hu as u64) << 32 | (ui & 0xffffffff);
        f = f64::from_bits(ui) - 1.;
    }
    hfsq = 0.5 * f * f;
    s = f / (2.0 + f);
    z = s * s;
    w = z * z;
    t1 = w * (LG2 + w * (LG4 + w * LG6));
    t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
    r = t2 + t1;
    dk = k as f64;
    s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI
}