1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use crate::spinwait::SpinWait;
use crate::thread_parker::{ThreadParker, ThreadParkerT, UnparkHandleT};
use core::{
    cell::Cell,
    mem, ptr,
    sync::atomic::{fence, AtomicUsize, Ordering},
};

struct ThreadData {
    parker: ThreadParker,

    // Linked list of threads in the queue. The queue is split into two parts:
    // the processed part and the unprocessed part. When new nodes are added to
    // the list, they only have the next pointer set, and queue_tail is null.
    //
    // Nodes are processed with the queue lock held, which consists of setting
    // the prev pointer for each node and setting the queue_tail pointer on the
    // first processed node of the list.
    //
    // This setup allows nodes to be added to the queue without a lock, while
    // still allowing O(1) removal of nodes from the processed part of the list.
    // The only cost is the O(n) processing, but this only needs to be done
    // once for each node, and therefore isn't too expensive.
    queue_tail: Cell<*const ThreadData>,
    prev: Cell<*const ThreadData>,
    next: Cell<*const ThreadData>,
}

impl ThreadData {
    #[inline]
    fn new() -> ThreadData {
        assert!(mem::align_of::<ThreadData>() > !QUEUE_MASK);
        ThreadData {
            parker: ThreadParker::new(),
            queue_tail: Cell::new(ptr::null()),
            prev: Cell::new(ptr::null()),
            next: Cell::new(ptr::null()),
        }
    }
}

// Invokes the given closure with a reference to the current thread `ThreadData`.
#[inline]
fn with_thread_data<T>(f: impl FnOnce(&ThreadData) -> T) -> T {
    let mut thread_data_ptr = ptr::null();
    // If ThreadData is expensive to construct, then we want to use a cached
    // version in thread-local storage if possible.
    if !ThreadParker::IS_CHEAP_TO_CONSTRUCT {
        thread_local!(static THREAD_DATA: ThreadData = ThreadData::new());
        if let Ok(tls_thread_data) = THREAD_DATA.try_with(|x| x as *const ThreadData) {
            thread_data_ptr = tls_thread_data;
        }
    }
    // Otherwise just create a ThreadData on the stack
    let mut thread_data_storage = None;
    if thread_data_ptr.is_null() {
        thread_data_ptr = thread_data_storage.get_or_insert_with(ThreadData::new);
    }

    f(unsafe { &*thread_data_ptr })
}

const LOCKED_BIT: usize = 1;
const QUEUE_LOCKED_BIT: usize = 2;
const QUEUE_MASK: usize = !3;

// Word-sized lock that is used to implement the parking_lot API. Since this
// can't use parking_lot, it instead manages its own queue of waiting threads.
pub struct WordLock {
    state: AtomicUsize,
}

impl WordLock {
    /// Returns a new, unlocked, WordLock.
    pub const fn new() -> Self {
        WordLock {
            state: AtomicUsize::new(0),
        }
    }

    #[inline]
    pub fn lock(&self) {
        if self
            .state
            .compare_exchange_weak(0, LOCKED_BIT, Ordering::Acquire, Ordering::Relaxed)
            .is_ok()
        {
            return;
        }
        self.lock_slow();
    }

    /// Must not be called on an already unlocked `WordLock`!
    #[inline]
    pub unsafe fn unlock(&self) {
        let state = self.state.fetch_sub(LOCKED_BIT, Ordering::Release);
        if state.is_queue_locked() || state.queue_head().is_null() {
            return;
        }
        self.unlock_slow();
    }

    #[cold]
    fn lock_slow(&self) {
        let mut spinwait = SpinWait::new();
        let mut state = self.state.load(Ordering::Relaxed);
        loop {
            // Grab the lock if it isn't locked, even if there is a queue on it
            if !state.is_locked() {
                match self.state.compare_exchange_weak(
                    state,
                    state | LOCKED_BIT,
                    Ordering::Acquire,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => return,
                    Err(x) => state = x,
                }
                continue;
            }

            // If there is no queue, try spinning a few times
            if state.queue_head().is_null() && spinwait.spin() {
                state = self.state.load(Ordering::Relaxed);
                continue;
            }

            // Get our thread data and prepare it for parking
            state = with_thread_data(|thread_data| {
                // The pthread implementation is still unsafe, so we need to surround `prepare_park`
                // with `unsafe {}`.
                #[allow(unused_unsafe)]
                unsafe {
                    thread_data.parker.prepare_park();
                }

                // Add our thread to the front of the queue
                let queue_head = state.queue_head();
                if queue_head.is_null() {
                    thread_data.queue_tail.set(thread_data);
                    thread_data.prev.set(ptr::null());
                } else {
                    thread_data.queue_tail.set(ptr::null());
                    thread_data.prev.set(ptr::null());
                    thread_data.next.set(queue_head);
                }
                if let Err(x) = self.state.compare_exchange_weak(
                    state,
                    state.with_queue_head(thread_data),
                    Ordering::Release,
                    Ordering::Relaxed,
                ) {
                    return x;
                }

                // Sleep until we are woken up by an unlock
                // Ignoring unused unsafe, since it's only a few platforms where this is unsafe.
                #[allow(unused_unsafe)]
                unsafe {
                    thread_data.parker.park();
                }

                // Loop back and try locking again
                spinwait.reset();
                self.state.load(Ordering::Relaxed)
            });
        }
    }

    #[cold]
    fn unlock_slow(&self) {
        let mut state = self.state.load(Ordering::Relaxed);
        loop {
            // We just unlocked the WordLock. Just check if there is a thread
            // to wake up. If the queue is locked then another thread is already
            // taking care of waking up a thread.
            if state.is_queue_locked() || state.queue_head().is_null() {
                return;
            }

            // Try to grab the queue lock
            match self.state.compare_exchange_weak(
                state,
                state | QUEUE_LOCKED_BIT,
                Ordering::Acquire,
                Ordering::Relaxed,
            ) {
                Ok(_) => break,
                Err(x) => state = x,
            }
        }

        // Now we have the queue lock and the queue is non-empty
        'outer: loop {
            // First, we need to fill in the prev pointers for any newly added
            // threads. We do this until we reach a node that we previously
            // processed, which has a non-null queue_tail pointer.
            let queue_head = state.queue_head();
            let mut queue_tail;
            let mut current = queue_head;
            loop {
                queue_tail = unsafe { (*current).queue_tail.get() };
                if !queue_tail.is_null() {
                    break;
                }
                unsafe {
                    let next = (*current).next.get();
                    (*next).prev.set(current);
                    current = next;
                }
            }

            // Set queue_tail on the queue head to indicate that the whole list
            // has prev pointers set correctly.
            unsafe {
                (*queue_head).queue_tail.set(queue_tail);
            }

            // If the WordLock is locked, then there is no point waking up a
            // thread now. Instead we let the next unlocker take care of waking
            // up a thread.
            if state.is_locked() {
                match self.state.compare_exchange_weak(
                    state,
                    state & !QUEUE_LOCKED_BIT,
                    Ordering::Release,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => return,
                    Err(x) => state = x,
                }

                // Need an acquire fence before reading the new queue
                fence(Ordering::Acquire);
                continue;
            }

            // Remove the last thread from the queue and unlock the queue
            let new_tail = unsafe { (*queue_tail).prev.get() };
            if new_tail.is_null() {
                loop {
                    match self.state.compare_exchange_weak(
                        state,
                        state & LOCKED_BIT,
                        Ordering::Release,
                        Ordering::Relaxed,
                    ) {
                        Ok(_) => break,
                        Err(x) => state = x,
                    }

                    // If the compare_exchange failed because a new thread was
                    // added to the queue then we need to re-scan the queue to
                    // find the previous element.
                    if state.queue_head().is_null() {
                        continue;
                    } else {
                        // Need an acquire fence before reading the new queue
                        fence(Ordering::Acquire);
                        continue 'outer;
                    }
                }
            } else {
                unsafe {
                    (*queue_head).queue_tail.set(new_tail);
                }
                self.state.fetch_and(!QUEUE_LOCKED_BIT, Ordering::Release);
            }

            // Finally, wake up the thread we removed from the queue. Note that
            // we don't need to worry about any races here since the thread is
            // guaranteed to be sleeping right now and we are the only one who
            // can wake it up.
            unsafe {
                (*queue_tail).parker.unpark_lock().unpark();
            }
            break;
        }
    }
}

trait LockState {
    fn is_locked(self) -> bool;
    fn is_queue_locked(self) -> bool;
    fn queue_head(self) -> *const ThreadData;
    fn with_queue_head(self, thread_data: *const ThreadData) -> Self;
}

impl LockState for usize {
    #[inline]
    fn is_locked(self) -> bool {
        self & LOCKED_BIT != 0
    }

    #[inline]
    fn is_queue_locked(self) -> bool {
        self & QUEUE_LOCKED_BIT != 0
    }

    #[inline]
    fn queue_head(self) -> *const ThreadData {
        (self & QUEUE_MASK) as *const ThreadData
    }

    #[inline]
    fn with_queue_head(self, thread_data: *const ThreadData) -> Self {
        (self & !QUEUE_MASK) | thread_data as *const _ as usize
    }
}