Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
//! Asynchronous sinks.
//!
//! This module contains:
//!
//! - The [`Sink`] trait, which allows you to asynchronously write data.
//! - The [`SinkExt`] trait, which provides adapters for chaining and composing
//!   sinks.

use crate::future::Either;
use core::pin::Pin;
use futures_core::future::Future;
use futures_core::stream::{Stream, TryStream};
use futures_core::task::{Context, Poll};

#[cfg(feature = "compat")]
use crate::compat::CompatSink;

pub use futures_sink::Sink;

mod close;
pub use self::close::Close;

mod drain;
pub use self::drain::{drain, Drain};

mod fanout;
pub use self::fanout::Fanout;

mod feed;
pub use self::feed::Feed;

mod flush;
pub use self::flush::Flush;

mod err_into;
pub use self::err_into::SinkErrInto;

mod map_err;
pub use self::map_err::SinkMapErr;

mod send;
pub use self::send::Send;

mod send_all;
pub use self::send_all::SendAll;

mod unfold;
pub use self::unfold::{unfold, Unfold};

mod with;
pub use self::with::With;

mod with_flat_map;
pub use self::with_flat_map::WithFlatMap;

#[cfg(feature = "alloc")]
mod buffer;
#[cfg(feature = "alloc")]
pub use self::buffer::Buffer;

impl<T: ?Sized, Item> SinkExt<Item> for T where T: Sink<Item> {}

/// An extension trait for `Sink`s that provides a variety of convenient
/// combinator functions.
pub trait SinkExt<Item>: Sink<Item> {
    /// Composes a function *in front of* the sink.
    ///
    /// This adapter produces a new sink that passes each value through the
    /// given function `f` before sending it to `self`.
    ///
    /// To process each value, `f` produces a *future*, which is then polled to
    /// completion before passing its result down to the underlying sink. If the
    /// future produces an error, that error is returned by the new sink.
    ///
    /// Note that this function consumes the given sink, returning a wrapped
    /// version, much like `Iterator::map`.
    fn with<U, Fut, F, E>(self, f: F) -> With<Self, Item, U, Fut, F>
    where
        F: FnMut(U) -> Fut,
        Fut: Future<Output = Result<Item, E>>,
        E: From<Self::Error>,
        Self: Sized,
    {
        With::new(self, f)
    }

    /// Composes a function *in front of* the sink.
    ///
    /// This adapter produces a new sink that passes each value through the
    /// given function `f` before sending it to `self`.
    ///
    /// To process each value, `f` produces a *stream*, of which each value
    /// is passed to the underlying sink. A new value will not be accepted until
    /// the stream has been drained
    ///
    /// Note that this function consumes the given sink, returning a wrapped
    /// version, much like `Iterator::flat_map`.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::channel::mpsc;
    /// use futures::sink::SinkExt;
    /// use futures::stream::{self, StreamExt};
    ///
    /// let (tx, rx) = mpsc::channel(5);
    ///
    /// let mut tx = tx.with_flat_map(|x| {
    ///     stream::iter(vec![Ok(42); x])
    /// });
    ///
    /// tx.send(5).await.unwrap();
    /// drop(tx);
    /// let received: Vec<i32> = rx.collect().await;
    /// assert_eq!(received, vec![42, 42, 42, 42, 42]);
    /// # });
    /// ```
    fn with_flat_map<U, St, F>(self, f: F) -> WithFlatMap<Self, Item, U, St, F>
    where
        F: FnMut(U) -> St,
        St: Stream<Item = Result<Item, Self::Error>>,
        Self: Sized,
    {
        WithFlatMap::new(self, f)
    }

    /*
    fn with_map<U, F>(self, f: F) -> WithMap<Self, U, F>
        where F: FnMut(U) -> Self::SinkItem,
              Self: Sized;

    fn with_filter<F>(self, f: F) -> WithFilter<Self, F>
        where F: FnMut(Self::SinkItem) -> bool,
              Self: Sized;

    fn with_filter_map<U, F>(self, f: F) -> WithFilterMap<Self, U, F>
        where F: FnMut(U) -> Option<Self::SinkItem>,
              Self: Sized;
     */

    /// Transforms the error returned by the sink.
    fn sink_map_err<E, F>(self, f: F) -> SinkMapErr<Self, F>
    where
        F: FnOnce(Self::Error) -> E,
        Self: Sized,
    {
        SinkMapErr::new(self, f)
    }

    /// Map this sink's error to a different error type using the `Into` trait.
    ///
    /// If wanting to map errors of a `Sink + Stream`, use `.sink_err_into().err_into()`.
    fn sink_err_into<E>(self) -> err_into::SinkErrInto<Self, Item, E>
    where
        Self: Sized,
        Self::Error: Into<E>,
    {
        SinkErrInto::new(self)
    }

    /// Adds a fixed-size buffer to the current sink.
    ///
    /// The resulting sink will buffer up to `capacity` items when the
    /// underlying sink is unwilling to accept additional items. Calling `flush`
    /// on the buffered sink will attempt to both empty the buffer and complete
    /// processing on the underlying sink.
    ///
    /// Note that this function consumes the given sink, returning a wrapped
    /// version, much like `Iterator::map`.
    ///
    /// This method is only available when the `std` or `alloc` feature of this
    /// library is activated, and it is activated by default.
    #[cfg(feature = "alloc")]
    fn buffer(self, capacity: usize) -> Buffer<Self, Item>
    where
        Self: Sized,
    {
        Buffer::new(self, capacity)
    }

    /// Close the sink.
    fn close(&mut self) -> Close<'_, Self, Item>
    where
        Self: Unpin,
    {
        Close::new(self)
    }

    /// Fanout items to multiple sinks.
    ///
    /// This adapter clones each incoming item and forwards it to both this as well as
    /// the other sink at the same time.
    fn fanout<Si>(self, other: Si) -> Fanout<Self, Si>
    where
        Self: Sized,
        Item: Clone,
        Si: Sink<Item, Error = Self::Error>,
    {
        Fanout::new(self, other)
    }

    /// Flush the sink, processing all pending items.
    ///
    /// This adapter is intended to be used when you want to stop sending to the sink
    /// until all current requests are processed.
    fn flush(&mut self) -> Flush<'_, Self, Item>
    where
        Self: Unpin,
    {
        Flush::new(self)
    }

    /// A future that completes after the given item has been fully processed
    /// into the sink, including flushing.
    ///
    /// Note that, **because of the flushing requirement, it is usually better
    /// to batch together items to send via `feed` or `send_all`,
    /// rather than flushing between each item.**
    fn send(&mut self, item: Item) -> Send<'_, Self, Item>
    where
        Self: Unpin,
    {
        Send::new(self, item)
    }

    /// A future that completes after the given item has been received
    /// by the sink.
    ///
    /// Unlike `send`, the returned future does not flush the sink.
    /// It is the caller's responsibility to ensure all pending items
    /// are processed, which can be done via `flush` or `close`.
    fn feed(&mut self, item: Item) -> Feed<'_, Self, Item>
        where Self: Unpin,
    {
        Feed::new(self, item)
    }

    /// A future that completes after the given stream has been fully processed
    /// into the sink, including flushing.
    ///
    /// This future will drive the stream to keep producing items until it is
    /// exhausted, sending each item to the sink. It will complete once both the
    /// stream is exhausted, the sink has received all items, and the sink has
    /// been flushed. Note that the sink is **not** closed.
    ///
    /// Doing `sink.send_all(stream)` is roughly equivalent to
    /// `stream.forward(sink)`. The returned future will exhaust all items from
    /// `stream` and send them to `self`.
    fn send_all<'a, St>(&'a mut self, stream: &'a mut St) -> SendAll<'a, Self, St>
    where
        St: TryStream<Ok = Item, Error = Self::Error> + Stream + Unpin + ?Sized,
        Self: Unpin,
    {
        SendAll::new(self, stream)
    }

    /// Wrap this sink in an `Either` sink, making it the left-hand variant
    /// of that `Either`.
    ///
    /// This can be used in combination with the `right_sink` method to write `if`
    /// statements that evaluate to different streams in different branches.
    fn left_sink<Si2>(self) -> Either<Self, Si2>
    where
        Si2: Sink<Item, Error = Self::Error>,
        Self: Sized,
    {
        Either::Left(self)
    }

    /// Wrap this stream in an `Either` stream, making it the right-hand variant
    /// of that `Either`.
    ///
    /// This can be used in combination with the `left_sink` method to write `if`
    /// statements that evaluate to different streams in different branches.
    fn right_sink<Si1>(self) -> Either<Si1, Self>
    where
        Si1: Sink<Item, Error = Self::Error>,
        Self: Sized,
    {
        Either::Right(self)
    }

    /// Wraps a [`Sink`] into a sink compatible with libraries using
    /// futures 0.1 `Sink`. Requires the `compat` feature to be enabled.
    #[cfg(feature = "compat")]
    #[cfg_attr(docsrs, doc(cfg(feature = "compat")))]
    fn compat(self) -> CompatSink<Self, Item>
    where
        Self: Sized + Unpin,
    {
        CompatSink::new(self)
    }

    /// A convenience method for calling [`Sink::poll_ready`] on [`Unpin`]
    /// sink types.
    fn poll_ready_unpin(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>>
    where
        Self: Unpin,
    {
        Pin::new(self).poll_ready(cx)
    }

    /// A convenience method for calling [`Sink::start_send`] on [`Unpin`]
    /// sink types.
    fn start_send_unpin(&mut self, item: Item) -> Result<(), Self::Error>
    where
        Self: Unpin,
    {
        Pin::new(self).start_send(item)
    }

    /// A convenience method for calling [`Sink::poll_flush`] on [`Unpin`]
    /// sink types.
    fn poll_flush_unpin(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>>
    where
        Self: Unpin,
    {
        Pin::new(self).poll_flush(cx)
    }

    /// A convenience method for calling [`Sink::poll_close`] on [`Unpin`]
    /// sink types.
    fn poll_close_unpin(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>>
    where
        Self: Unpin,
    {
        Pin::new(self).poll_close(cx)
    }
}