1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
use crate::alloc::Box;
use core::mem;

#[cfg(feature = "unstable-debug")]
use core::any;

pub struct Any {
    ptr: *mut (),
    drop: fn(*mut ()),
    fingerprint: Fingerprint,

    /// For panic messages only. Not used for comparison.
    #[cfg(feature = "unstable-debug")]
    type_name: &'static str,
}

// These functions are all unsafe. They are not exposed to the user. Declaring
// them as `unsafe fn` would not make the rest of erased-serde any safer or more
// readable.
impl Any {
    // This is unsafe -- caller must not hold on to the Any beyond the lifetime
    // of T.
    //
    // Example of bad code:
    //
    //    let s = "bad".to_owned();
    //    let a = Any::new(&s);
    //    drop(s);
    //
    // Now `a.view()` and `a.take()` return references to a dead String.
    pub(crate) fn new<T>(t: T) -> Self {
        let ptr = Box::into_raw(Box::new(t)) as *mut ();
        let drop = |ptr| drop(unsafe { Box::from_raw(ptr as *mut T) });
        let fingerprint = Fingerprint::of::<T>();

        // Once attributes on struct literal fields are stable, do that instead.
        // https://github.com/rust-lang/rust/issues/41681
        #[cfg(not(feature = "unstable-debug"))]
        {
            Any {
                ptr,
                drop,
                fingerprint,
            }
        }

        #[cfg(feature = "unstable-debug")]
        {
            let type_name = any::type_name::<T>();
            Any {
                ptr,
                drop,
                fingerprint,
                type_name,
            }
        }
    }

    // This is unsafe -- caller is responsible that T is the correct type.
    pub(crate) fn view<T>(&mut self) -> &mut T {
        if self.fingerprint != Fingerprint::of::<T>() {
            self.invalid_cast_to::<T>();
        }
        let ptr = self.ptr as *mut T;
        unsafe { &mut *ptr }
    }

    // This is unsafe -- caller is responsible that T is the correct type.
    pub(crate) fn take<T>(self) -> T {
        if self.fingerprint != Fingerprint::of::<T>() {
            self.invalid_cast_to::<T>();
        }
        let ptr = self.ptr as *mut T;
        let box_t = unsafe { Box::from_raw(ptr) };
        mem::forget(self);
        *box_t
    }

    #[cfg(not(feature = "unstable-debug"))]
    fn invalid_cast_to<T>(&self) -> ! {
        panic!("invalid cast; enable `unstable-debug` feature to debug");
    }

    #[cfg(feature = "unstable-debug")]
    fn invalid_cast_to<T>(&self) -> ! {
        let from = self.type_name;
        let to = any::type_name::<T>();
        panic!("invalid cast: {} to {}", from, to);
    }
}

impl Drop for Any {
    fn drop(&mut self) {
        (self.drop)(self.ptr);
    }
}

#[derive(Debug, Eq, PartialEq)]
struct Fingerprint {
    size: usize,
    align: usize,
    id: usize,
}

impl Fingerprint {
    fn of<T>() -> Fingerprint {
        Fingerprint {
            size: mem::size_of::<T>(),
            align: mem::align_of::<T>(),
            // This is not foolproof -- theoretically Rust or LLVM could
            // deduplicate some or all of these methods. But in practice it's
            // great and I am comfortable relying on this in debug mode to catch
            // bugs early.
            id: Fingerprint::of::<T> as usize,
        }
    }
}

#[test]
fn test_fingerprint() {
    assert_eq!(Fingerprint::of::<usize>(), Fingerprint::of::<usize>());
    assert_eq!(Fingerprint::of::<&str>(), Fingerprint::of::<&'static str>());

    assert_ne!(Fingerprint::of::<usize>(), Fingerprint::of::<isize>());
    assert_ne!(Fingerprint::of::<usize>(), Fingerprint::of::<&usize>());
    assert_ne!(Fingerprint::of::<&usize>(), Fingerprint::of::<&&usize>());
    assert_ne!(Fingerprint::of::<&usize>(), Fingerprint::of::<&mut usize>());

    struct A;
    struct B;
    assert_ne!(Fingerprint::of::<A>(), Fingerprint::of::<B>());
}