1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
use crate::{Distribution, InverseGaussian, Standard, StandardNormal};
use num_traits::Float;
use rand::Rng;
#[derive(Debug, PartialEq)]
pub enum Error {
AlphaNegativeOrNull,
AbsoluteBetaNotLessThanAlpha,
}
#[derive(Debug)]
pub struct NormalInverseGaussian<F>
where
F: Float,
StandardNormal: Distribution<F>,
Standard: Distribution<F>,
{
alpha: F,
beta: F,
inverse_gaussian: InverseGaussian<F>,
}
impl<F> NormalInverseGaussian<F>
where
F: Float,
StandardNormal: Distribution<F>,
Standard: Distribution<F>,
{
pub fn new(alpha: F, beta: F) -> Result<NormalInverseGaussian<F>, Error> {
if !(alpha > F::zero()) {
return Err(Error::AlphaNegativeOrNull);
}
if !(beta.abs() < alpha) {
return Err(Error::AbsoluteBetaNotLessThanAlpha);
}
let gamma = (alpha * alpha - beta * beta).sqrt();
let mu = F::one() / gamma;
let inverse_gaussian = InverseGaussian::new(mu, F::one()).unwrap();
Ok(Self {
alpha,
beta,
inverse_gaussian,
})
}
}
impl<F> Distribution<F> for NormalInverseGaussian<F>
where
F: Float,
StandardNormal: Distribution<F>,
Standard: Distribution<F>,
{
fn sample<R>(&self, rng: &mut R) -> F
where R: Rng + ?Sized {
let inv_gauss = rng.sample(&self.inverse_gaussian);
self.beta * inv_gauss + inv_gauss.sqrt() * rng.sample(StandardNormal)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_normal_inverse_gaussian() {
let norm_inv_gauss = NormalInverseGaussian::new(2.0, 1.0).unwrap();
let mut rng = crate::test::rng(210);
for _ in 0..1000 {
norm_inv_gauss.sample(&mut rng);
}
}
#[test]
fn test_normal_inverse_gaussian_invalid_param() {
assert!(NormalInverseGaussian::new(-1.0, 1.0).is_err());
assert!(NormalInverseGaussian::new(-1.0, -1.0).is_err());
assert!(NormalInverseGaussian::new(1.0, 2.0).is_err());
assert!(NormalInverseGaussian::new(2.0, 1.0).is_ok());
}
}