1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
// origin: FreeBSD /usr/src/lib/msun/src/k_cos.c // // ==================================================== // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunSoft, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== const C1: f64 = 4.16666666666666019037e-02; /* 0x3FA55555, 0x5555554C */ const C2: f64 = -1.38888888888741095749e-03; /* 0xBF56C16C, 0x16C15177 */ const C3: f64 = 2.48015872894767294178e-05; /* 0x3EFA01A0, 0x19CB1590 */ const C4: f64 = -2.75573143513906633035e-07; /* 0xBE927E4F, 0x809C52AD */ const C5: f64 = 2.08757232129817482790e-09; /* 0x3E21EE9E, 0xBDB4B1C4 */ const C6: f64 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ // kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 // Input x is assumed to be bounded by ~pi/4 in magnitude. // Input y is the tail of x. // // Algorithm // 1. Since cos(-x) = cos(x), we need only to consider positive x. // 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. // 3. cos(x) is approximated by a polynomial of degree 14 on // [0,pi/4] // 4 14 // cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x // where the remez error is // // | 2 4 6 8 10 12 14 | -58 // |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 // | | // // 4 6 8 10 12 14 // 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then // cos(x) ~ 1 - x*x/2 + r // since cos(x+y) ~ cos(x) - sin(x)*y // ~ cos(x) - x*y, // a correction term is necessary in cos(x) and hence // cos(x+y) = 1 - (x*x/2 - (r - x*y)) // For better accuracy, rearrange to // cos(x+y) ~ w + (tmp + (r-x*y)) // where w = 1 - x*x/2 and tmp is a tiny correction term // (1 - x*x/2 == w + tmp exactly in infinite precision). // The exactness of w + tmp in infinite precision depends on w // and tmp having the same precision as x. If they have extra // precision due to compiler bugs, then the extra precision is // only good provided it is retained in all terms of the final // expression for cos(). Retention happens in all cases tested // under FreeBSD, so don't pessimize things by forcibly clipping // any extra precision in w. #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] pub(crate) fn k_cos(x: f64, y: f64) -> f64 { let z = x * x; let w = z * z; let r = z * (C1 + z * (C2 + z * C3)) + w * w * (C4 + z * (C5 + z * C6)); let hz = 0.5 * z; let w = 1.0 - hz; w + (((1.0 - w) - hz) + (z * r - x * y)) }